INVESTIGATION OF THE IMPACT OF DIFFERENT PARAMETERS ON THE MORPHOLOGY OF ELECTROSPUN POLYURETHANE NANOFIBERS
DOI:
https://doi.org/10.25271/sjuoz.2024.12.1.1203Keywords:
Electrospinning, nanofibers, polyurethane, Concentration, Flowrate, High voltageAbstract
In this research, nonwoven nanofiber mats were prepared using the electrospinning method for the solution of polyurethane polymer dissolved in acetic acid. Effects of solution concentration, solution flow rate, as well as high voltage on the morphonology and wettability of the prepared nanofibers were studied. Nanofiber morphology was investigated through the analysis of scanning electron microscopy (SEM) micrographs using ImageJ software, while the wettability of the nanofiber mat surfaces was studied through the measurement of the contact angle. Results revealed that when the concentration of the solution was changed from 8wt% to 12wt%, the average nanofiber diameter showed a significant increase from 0.326 µm to 0.380 µm, while the contact angle increased from 39 degrees to 79 degrees. Results also showed that when the applied high voltage was changed from 10 KV to 25 KV, the average nanofiber diameter decreased and then increased within the range of 0.380 to 0.497 µm and that the contact angle was increased from 81 degrees to 108 degrees showing an obvious switching from hydrophilic towards hydrophobic surface. When the syringe pump flow rate was changed from 0.012 ml/min to 0.02 ml/min, morphology measurements showed that the average nanofiber diameter showed a significant increase from 0.351 µm to 0.456 µm, and the surface contact angle was also increased from 43 degrees to 98 degrees. Finally, the results of Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction analysis (XRD) tests showed that the electrospun polyurethane polymer material used in this work was not changed during the electrospinning process.
References
Akduman, C., & Kumbasar, E. P. A. (2017). Electrospun Polyurethane Nanofibers. Aspects of Polyurethanes. https://doi.org/10.5772/intechopen.69937
Amina, M., Al-Youssef, H. M., Amna, T., Hassan, S., El-Shafae, A. M., Kim, H. Y., & Khil, M.-S. (2012). Poly(urethane)/G. Mollis Composite Nanofibers for Biomedical Applications. Journal of Nanoengineering and Nanomanufacturing, 2(1), 85–90. https://doi.org/10.1166/jnan.2012.1056
Asefnejad, A., Khorasani, M. T., Behnamghader, A., Farsadzadeh, B., & Bonakdar, S. (2011). Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. International Journal of Nanomedicine, 6(October), 2375–2384. https://doi.org/10.2147/ijn.s15586
Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70(5), 703–718. https://doi.org/10.1016/j.compscitech.2010.01.010
Banuškevičiute, A., Adomavičiute, E., Milašius, R., & Stanys, S. (2011). Formation of thermoplastic polyurethane (TPU) nano/micro fibers by electrospinning process using electrode with tines. Medziagotyra, 17(3), 287–292. https://doi.org/10.5755/j01.ms.17.3.595
Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I. S., & Bechelany, M. (2019). Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Applied Materials Today, 17, 1–35. https://doi.org/10.1016/j.apmt.2019.06.015
Beachley, V., & Wen, X. (2010). Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Progress in Polymer Science (Oxford), 35(7), 868–892. https://doi.org/10.1016/j.progpolymsci.2010.03.003
Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
Borhani, S., Hosseini, S. A., Etemad, S. G., & Militký, J. (2008). Structural characteristics and selected properties of polyacrylonitrile nanofiber mats. Journal of Applied Polymer Science, 108(5), 2994-3000.
Chen, H. W., & Lin, M. F. (2020). Characterization, biocompatibility, and optimization of electrospun SF/PCL/CS composite nanofibers. Polymers, 12(7). https://doi.org/10.3390/polym12071439
Choi, H. J., Kim, S. B., Kim, S. H., & Lee, M. H. (2014). Preparation of electrospun polyurethane filter media and their collection mechanisms for ultrafine particles. Journal of the Air and Waste Management Association, 64(3), 322–329. https://doi.org/10.1080/10962247.2013.858652
Colmenares-Roldán, G. J., Quintero-Martínez, Y., Agudelo-Gómez, L. M., Rodríguez- Vinasco, L. F., & Hoyos-Palacio, L. M. (2017). Influence of the molecular weight of polymer, solvents and operational condition in the electrospinning of polycaprolactone. Revista Facultad de Ingenieria, 2017(84), 35–45. https://doi.org/10.17533/udea.redin.n84a05
Demir, M. M., Yilgor, I., Yilgor, E., & Erman, B. (2002). Electrospinning of polyurethane ®bers M.M. Polymer, 43, 3303–3309.
Diani, J., & Gall, K. (2006). Finite Strain 3D Thermoviscoelastic Constitutive Model. Society, 1–10. https://doi.org/10.1002/pen
Eatemadi, A., Daraee, H., Zarghami, N., Yar, H. M., & Akbarzadeh, A. (2016). Nanofiber: Synthesis and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 44(1), 111–121. https://doi.org/10.3109/21691401.2014.922568
Emad Abdoluosefi, H., & Honarasa, G. (2017). Fabrication of polyurethane and thermoplastic polyurethane nanofiber by controlling the electrospinning parameters. Materials Research Express, 4(10). https://doi.org/10.1088/2053-1591/aa9191
Firoozi, S., Amani, A., Derakhshan, M. A., & Ghanbari, H. (2016). Artificial Neural Networks modeling of electrospun polyurethane nanofibers from chloroform/methanol solution. Journal of Nano Research, 41, 18–30. https://doi.org/10.4028/www.scientific.net/JNanoR.41.18
Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592
Gao, C., Zhang, L., Wang, J., Jin, M., Tang, Q., Chen, Z., Cheng, Y., Yang, R., & Zhao, G. (2021). Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. Journal of Materials Chemistry B, 9(14), 3106–3130. https://doi.org/10.1039/d1tb00067e
Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie - International Edition, 46(30), 5670–5703. https://doi.org/10.1002/anie.200604646
Hale Karakaş. (2012). Electrospinning of nanofibers and their applications. MDT “Electrospinning,” 3, 1–35. http://www.pdfdrive.net/electrospinning-of-nanofibers-and-their-applications-e34353447.html
Hoseini, Z., & Nikje, M. M. A. (2018). Synthesis and characterization of a novel thermally stable water dispersible polyurethane and its magnetic nanocomposites. Iranian Polymer Journal (English Edition), 27(10), 733–743. https://doi.org/10.1007/s13726-018-0650-5
Hu, J., Liu, C., & Lin, C. (2021). 李莹-Synthesis, characterization and electrospinning of new thermoplastic.pdf.
Karakaş, H., Jahangiri, S., Saraç, A. S., Karakaş, H., Jahangiri, S., Structure, A. S. S., Parameter, P., Karakaş, H., Jahangiri, S., & Saraç, A. S. (2018). Electrospun Nanofibers To cite this version : HAL Id : hal-01894397 Structure and Process Parameter Relations of Electrospun Nanofibers.
Karakaş, H., Saraç, A., Polat, T., & Budak, E. (2013). Polyurethane Nanofibers Obtained By Electrospinning Process. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnology Engineering, 7(3), 177–180. http://waset.org/journals/waset/v75/v75-111.pdf
Khan, Z., Kafiah, F., Zahid Shafi, H., Nufaiei, F., Ahmed Furquan, S., & Matin, A. (2015). Morphology, Mechanical Properties and Surface Characteristics of Electrospun Polyacrylonitrile (PAN) Nanofiber Mats. International Journal of Advanced Engineering and Nano Technology, February, 2347–6389.
Kiliç, E., Yakar, A., & Pekel Bayramgil, N. (2018). Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. Journal of Materials Science: Materials in Medicine, 29(1). https://doi.org/10.1007/s10856-017-6013-5
Li, B., Liu, Y., Wei, S., Huang, Y., Yang, S., Xue, Y., Xuan, H., & Yuan, H. (2020). A solvent system involved fabricating electrospun polyurethane nanofibers for biomedical applications. Polymers, 12(12), 1–12. https://doi.org/10.3390/polym12123038
Li, Z., Wang, C., & Zhenyu LI. (2016). Zhenyu Li · Ce Wang One-Dimensional Nanostructures Electrospinning Technique and Unique Nanofibers (Issue November). https://doi.org/10.1007/978-3-642-36427-3
Liu, M., Liu, T., Chen, X., Yang, J., Deng, J., He, W., Zhang, X., Lei, Q., Hu, X., Luo, G., & Wu, J. (2018). Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. Journal of Nanobiotechnology, 16(1), 1–19. https://doi.org/10.1186/s12951-018-0416-4
Matabola, K. P., de Vries, A. R., Luyt, A. S., & Kumar, R. (2011). Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. Express Polymer Letters, 5(7), 635–642. https://doi.org/10.3144/expresspolymlett.2011.61
Mohammadi, A., Barikani, M., & Barmar, M. (2015). Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites. Polymer Bulletin, 72(2), 219–234. https://doi.org/10.1007/s00289-014-1268-1
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806
Nawae, S., Tohluebaji, N., Putson, C., Muensit, N., & Yuennan, J. (2021). Effect of flow rate on the fabrication of P(VDF-HFP) nanofibers. Journal of Physics: Conference Series, 1719(1). https://doi.org/10.1088/1742-6596/1719/1/012070
Nirmala, R., Nam, K. T., Navamathavan, R., Park, S. J., & Kim, H. Y. (2011). Hydroxyapatite Mineralization on the Calcium Chloride Blended Polyurethane Nanofiber via Biomimetic Method. Nanoscale Research Letters, 6(1), 1–8. https://doi.org/10.1007/s11671-010-9737-4
Nitanan, T., Opanasopit, P., Akkaramongkolporn, P., Rojanarata, T., Ngawhirunpat, T., & Supaphol, P. (2012). Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean Journal of Chemical Engineering, 29(2), 173–181. https://doi.org/10.1007/s11814-011-0167-5
Öteyaka, M. Ö., Aybar, K., & Öteyaka, H. C. (2022). A comparative study of the effect of polyurethane nanofiber and powders filler on the mechanical properties of carbon fiber and glass fiber composites. Pamukkale University Journal of Engineering Sciences, 28(1), 51–57. https://doi.org/10.5505/pajes.2021.73659
Panwiriyarat, W. (2013). Preparation and properties of bio-based polyurethane made from natural rubber and poly (Ɛ-caprolactone) (Doctoral dissertation, Prince of Songkla University).
Rabbi, A., Nasouri, K., Bahrambeygi, H., Shoushtari, A. M., & Babaei, M. R. (2012). RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fibers and Polymers, 13(8), 1007–1014. https://doi.org/10.1007/s12221-012-1007-x
Sharma, J., Lizu, M., Stewart, M., Zygula, K., Lu, Y., Chauhan, R., Yan, X., Guo, Z., Wujcik, E. K., & Wei, S. (2015). Multifunctional nanofibers towards active biomedical therapeutics. In Polymers (Vol. 7, Issue 2). https://doi.org/10.3390/polym7020186
Sorlier, P. (2007). Electrospinning and nanofibers. In Polymers: Last achievements and prospects, in honour of Professor Jérôme. http://hdl.handle.net/2268/11512
Sabitha, M., & Rajiv, S. (2015). Preparation and characterization of ampicillin‐incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polymer Engineering & Science, 55(3), 541-548.
Ungur, G., & Hrůza, J. (2017). Modified polyurethane nanofibers as antibacterial filters for air and water purification. RSC Advances, 7(78), 49177–49187. https://doi.org/10.1039/c7ra06317b
Wang, N., Burugapalli, K., Song, W., Halls, J., Moussy, F., Zheng, Y., Ma, Y., Wu, Z., & Li, K. (2013). Tailored fibro-porous structure of electrospun polyurethane membranes, their size-dependent properties and trans-membrane glucose diffusion. Journal of Membrane Science, 427(January), 207–217. https://doi.org/10.1016/j.memsci.2012.09.052
Williams, G. R., Raimi-Abraham, B. T., & Luo, C. J. (2018). Electrospinning fundamentals. Nanofibres in Drug Delivery, 24–59. https://doi.org/10.2307/j.ctv550dd1.6
Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. https://doi.org/10.1002/app
Yi, B., Zhao, Y., Tian, E., Li, J., & Ren, Y. (2019). High-performance polyimide nanofiber membranes prepared by electrospinning. High Performance Polymers, 31(4), 438–448. https://doi.org/10.1177/0954008318781703
Zhou, Z., & Wu, X. F. (2015). Electrospinning superhydrophobic-superoleophilic fibrous PVDF membranes for high-efficiency water-oil separation. Materials Letters, 160, 423–427. https://doi.org/10.1016/j.matlet.2015.08.003
Zulkefle, M. A., Abid, S. A. U. S. M., Rahman, R. A., Zulkifli, Z., & Herman, S. H. (2020). Polyvinylpyrrolidone matrix concentration effects on the physical properties of TiO2nanofibers prepared using electrospinning method. AIP Conference Proceedings, 2306. https://doi.org/10.1063/5.0032775
Zuo, W., Zhu, M., Yang, W., Yu, H., Chen, Y., & Zhang, Y. (2005). Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering and Science, 45(5), 704–709. https://doi.org/10.1002/pen.20304
Zhuo, H., Hu, J., & Chen, S. (2008). Electrospun polyurethane nanofibres having shape memory effect. Materials Letters, 62(14), 2074-2076.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fatima T. Sabri, Manaf A. Mahammed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.