SYNTHESIS, CHARACTERIZATION, DFT, AND BIOLOGICAL ASSAY OF NEW XANTHATE COMPLEXES WITH NITROGEN BASES

Synthesis, Characterization and DFT Study of 2-Phenoxyethyl Xanthate Ligand and Complexes with Transitions Metals and their Adducts with Nitrogen Base Ligands

Authors

  • Mohammed Molla-Babaker Department of Chemistry, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq.
  • Maher Khalid Department of Chemistry, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq.
  • Saad.E. AL-Mukhtar Department of Chemistry, College of science, University of Mosul, Iraq.

DOI:

https://doi.org/10.25271/sjuoz.2024.12.2.1250

Keywords:

Complexes of [Manganese (ll), Iron (ll), Cobalt (ll) & Nickel (ll), Xanthate Salt, Hexa-coordinate complexes and Xanthate complexes.

Abstract

This study introduces a new series of complexes and adducts, denoted by [M(2-PhOEtXant)2.nL], where M represents Mn(II), Fe(II), Co(II), or Ni(II), and the ligand (2-PhOEtXant) is 2-Phenoxyethylxanthate. Varying ligands, including pyridine, piperidine, quinoline, ethylenediamine, and (1,10)-phenanthroline, are explored based on the value of n. Comprehensive characterization, encompassing techniques like 1H-NMR, 13C-NMR, FTIR, AA, CHN analysis, UV-visible spectroscopy, and magnetic property measurements, is employed. Results indicate an octahedral geometry for these complexes, as revealed by effective magnetic moment measurements and electronic spectra analysis. The compounds exhibit noteworthy antioxidant properties, demonstrated through the DPPH radical scavenging method, highlighting their potential as effective antioxidants. Moreover, the complexes display enhanced antibacterial activity against microbial strains compared to free ligands. This research not only delves into the coordination chemistry of these complexes but also underscores their diverse applications. Combining experimental methods with computational insights using Density Functional Theory (DFT) enhances the understanding of dithiolate transition metal complexes. The alignment of computational and experimental outcomes strengthens the reliability of the findings, laying a robust foundation for interdisciplinary exploration. The identified potential applications in optoelectronics, along with the notable antioxidant and antibacterial activities, position these complexes as promising contenders for advanced technologies and scientific applications.

References

Abdullah, N. H. S., Ozair, L. N., Anas, M. M. A. M., & Yamin, B. M. (2021). Structural and Electronic Study of Palladium (II) Complexes by a Theoretical Approach. Journal of Physics: Conference Series, 1893(1), 12004.

Abrahams, B. F., Hoskins, B. F., Tiekink, E. R. T., & Winter, G. (1988). Investigation of a new xanthate ligand. The crystal and molecular structures of nickel and cadmium (methoxyethyl) xanthates. Australian Journal of Chemistry, 41(7), 1117–1122.

Adel, Heja Ibrahim, S. E. A. (2022). Synthesis and Characterization of Sulfur Donor Ligand (Xanthate) Complexes with Manganese (ll), Iron (ll), Cobalt (ll), Nikel (ll), Copper (ll), and Zinc (ll) and Their Adduct With Nitrogen Base Ligand . Journal of Duhok University, 25(2), 244–260.

Ajiboye, T. O., & Onwudiwe, D. C. (2022). Synthesis and Antioxidant Investigation of Ag2S Nanoparticles Obtained from Silver (I) Complex of N-Methyl-N-Phenyl-Dithiocarbamate. Journal of Nano Research, 76, 131–143.

Al-fahdawi, A., & Alsalihi, E. (2018). Synthesis and Characterization of Iron II , Cobalt II , Nickel II , Copper II , and Zinc II Complexes Using Diphenylmethyl Xanthate LigandSynthesis and Characterization of IronII, CobaltII, NickelII, CopperII, and ZincII Complexes Using Diphenylmethyl Xan. ARO-The Scientific Journal of Koya University, 1. https://doi.org/10.14500/aro.10243

Al-Fahdawi, A., & Alsalihi, E. (2018). Synthesis and Characterization of Iron (II), Cobalt (II), Nickel (II), Copper (II), and Zinc (II) Complexes Using Diphenylmethyl Xanthate Ligand. Aro-The Scientific Journal of Koya University, 6(1), 33–37.

Al-Garah, F. K. (2017). Preparation and characterization of some Transition Metal Complexes the first and second with (1-methyl-3-Piperidine Xanthate potassium) and ethylenediamine. Tikrit Journal of Pure Science, 22(12), 72–78.

AL-Mukhtar, S. E., & AL-Jarah, F. K. (2019). Preparation and Characterization of some Transition Metal Complexes with OleylXanthate and 1, 10-Phenanthrolin. Rafidain Journal of Science, 28(2E: Chem.), 228–234.

Al Zoubi, W., Karabet, F., Al Bandakji, R., & Hussein, K. (2017). Experimental and theoretical investigations of the antioxidant activity of 2, 2′‐methylenebis (4, 6‐dialkylphenol) compounds. Applied Organometallic Chemistry, 31(2), e3562.

Alongamo, C. I. L., Tasheh, S. N., Nkungli, N. K., Bine, F. K., & Ghogomu, J. N. (2022). Structural, electronic, and charge transport properties of new materials based on 2-(5-mercapto-1, 3, 4-oxadiazol-2-yl) phenol for organic solar cells and light emitting diodes by DFT and TD-DFT. Journal of Chemistry, 2022, p 15.

Andotra, S., Kalgotra, N., & Pandey, S. K. (2014). Syntheses, Characterization, Thermal, and Antimicrobial Studies of Lanthanum (III) Tolyl/Benzyldithiocarbonates. Bioinorganic Chemistry and Applications, 2014.

Andotra, S., Kumar, S., Kour, M., Sharma, V., Jaglan, S., & Pandey, S. K. (2017). Synthesis, spectroscopic, DFT and in vitro biological studies of vanadium (III) complexes of aryldithiocarbonates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 180, 127–137.

Batten, S. R., & Robson, R. (1998). Interpenetrating nets: ordered, periodic entanglement. Angewandte Chemie International Edition, 37(11), 1460–1494.

Becke, A. (n.d.). Density-functional thermochemistry. III. The role of exact exchange (1993) J. Chem. Phys, 98, 5648.

Cordova, B. M., Infantas, G. C., Mayta, S., Huamani-Palomino, R. G., Kock, F. V. C., de Oca, J. M., & Valderrama, A. C. (2021). Xanthate-modified alginates for the removal of Pb (II) and Ni (II) from aqueous solutions: A brief analysis of alginate xanthation. International Journal of Biological Macromolecules, 179, 557–566.

DHAKA, S., & Choudhary, P. (2015). Synthesis and antibacterial activity of Schiff Base Complexes of Si (IV). Global Journal of Chemistry, 1(1), 28–32.

Faroughi Niya, H., Hazeri, N., & Fatahpour, M. (2021). Synthesis, characterization, and application of CoFe2O4@ amino‐2‐naphthol‐4‐sulfonic acid as a novel and reusable catalyst for the synthesis of spirochromene derivatives. Applied Organometallic Chemistry, 35(3), e6119.

Gaikwad, V. V, Mane, P. A., Dey, S., Patel, D., & Bhanage, B. M. (2020). Supramolecular Pd (II) complex of DPPF and dithiolate: An efficient catalyst for amino and phenoxycarbonylation using Co2 (CO) 8 as sustainable C1 source. Molecular Catalysis, 482, 110672.

Griffith, D. M., Szőcs, B., Keogh, T., Suponitsky, K. Y., Farkas, E., Buglyó, P., & Marmion, C. J. (2011). Suberoylanilide hydroxamic acid, a potent histone deacetylase inhibitor; its X-ray crystal structure and solid state and solution studies of its Zn (II), Ni (II), Cu (II) and Fe (III) complexes. Journal of Inorganic Biochemistry, 105(6), 763–769.

Heimbach, I., Petrus, H. T. B. M., Prasetya, A., Idrus, A., Timotius, D., Kusumastuti, Y., & Sutijan, S. (2023). Studi Recovery Tembaga pada Proses Froth Flotation dari Bijih Tembaga Papua, Indonesia dengan Variasi pH dan Konsentrasi Kolektor. Seminar Nasional Teknik Kimia" Kejuangan", 1–8.

Hussein, S. Z., & Ahmed, H. (2023). Design, structural and electronic properties of PVA/SeO2 structure: DFT study. AIP Conference Proceedings, 2591(1), p 40036.

Jassim, S., Abbas, A., AL-Shakban, M., & Ahmed, L. (2021). Chemical Vapour Deposition of CdS Thin Films at Low Temperatures from Cadmium Ethyl Xanthate. Egyptian Journal of Chemistry, 64(5), 2533–2538.

Juncal, L. C., Avila, J., Asensio, M. C., Della Védova, C. O., & Romano, R. M. (2017). Electronic structure determination using an assembly of conventional and synchrotron techniques: The case of a xanthate complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 180, 183–192.

Khoo, T.-J., bin Break, M. K., Crouse, K. A., Tahir, M. I. M., Ali, A. M., Cowley, A. R., Watkin, D. J., & Tarafder, M. T. H. (2014). Synthesis, characterization and biological activity of two Schiff base ligands and their nickel (II), copper (II), zinc (II) and cadmium (II) complexes derived from S-4-picolyldithiocarbazate and X-ray crystal structure of cadmium (II) complex derived fro. Inorganica Chimica Acta, 413, 68–76.

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785.

Mane, P. A., Dey, S., & Vivekananda, K. V. (2017). Macrocyclic Pd (II) dithiolate complexes as catalysts in Heck reactions. Tetrahedron Letters, 58(1), 25–29.

Martell, A. E. (1971). Coordination chemistry van Nostrand Reinhold. New York, 1, 55–56.

McNaughter, P. D., Saah, S. A., Akhtar, M., Abdulwahab, K., Malik, M. A., Raftery, J., Awudza, J. A. M., & O’Brien, P. (2016). The effect of alkyl chain length on the structure of lead (II) xanthates and their decomposition to PbS in melt reactions. Dalton Transactions, 45(41), 16345–16353.

Mensah, M. B., Awudza, J. A. M., Revaprasadu, N., & O’Brien, P. (2021). Synthesis of CdS and PbS nanoparticles by the thermal decomposition of ethyl xanthate complexes in castor oil using the heat-up technique. Materials Science in Semiconductor Processing, 122, 105493.

Mikheylis, A. V, Grivin, V. P., & Plyusnin, V. F. (2023). Spectroscopy and kinetics of intermediates in photochemistry of xanthate Ni (S2COEt) 2 complex in CCl4. Journal of Photochemistry and Photobiology A: Chemistry, 435, 114260.

Mohamed, A. A., Kani, I., Ramirez, A. O., & Fackler, J. P. (2004). Synthesis, characterization, and luminescent properties of dinuclear gold (I) xanthate complexes: X-ray structure of [Au2 (n Bu-xanthate) 2]. Inorganic Chemistry, 43(13), 3833–3839.

Montagner, D., Marzano, C., & Gandin, V. (2011). Synthesis, characterization and cytotoxic activity of palladium (II) dithiocarbamate complexes with α, ω-diamines. Inorganica Chimica Acta, 376(1), 574–580.

Najeeb, Hussein N, Abed, M. K., & Hussein, S. A. (2020). Quantum Chemical Studies on the Molecular Structure and Electronic Properties of Tin-Metal Complexes. TEST ENGINEERING AND MANAGEMENT, 83(5–6), 12881–12887.

Najeeb, Hussein Neama, Ammer ALshareefi, M. A., & Abbood, H. I. (2019). Quantum Chemical Studies on the Molecular Structure and Electronic Properties of Rhenium Metal Complexes. Indian Journal of Forensic Medicine & Toxicology, 13(4), p 924.

Nicholls, D. (2013). The chemistry of iron, cobalt and nickel: comprehensive inorganic chemistry (Vol. 24). Elsevier.

Palaty, S., Devi, P. V, & Mary, K. J. (2010). Characterisation and thermal decomposition behaviour of xanthate compounds. Progress in Rubber Plastics and Recycling Technology, 26(4), 199–214.

Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), 1984.

Peyrat-Maillard, M. N., Bonnely, S., & Berset, C. (2000). Determination of the antioxidant activity of phenolic compounds by coulometric detection. Talanta, 51(4), 709–716.

Plyusnin, V. F., Mikheylis, A. V, Grivin, V. P., & Shubin, A. A. (2021). Photochemistry of Dithiocarbamate Ni (S2P (i-Bu) 2) 2 Complexes in CCl4. Transint Species and TD-DFT Calculations. XXVIII Международная Чугаевская Конференция По Координационной Химии, p 111-111.

Qadir, A. M. (2016). Synthesis and Crystal Structure of o-Methoxyethyldithiocarbonato Nickel (II) Complex involving Tetramethylethylenediamine. Asian Journal of Chemistry, 28(5), 1169.

Rajput, G., Singh, V., Singh, S. K., Prasad, L. B., Drew, M. G. B., & Singh, N. (2012). Cooperative Metal–Ligand‐Induced Properties of Heteroleptic Copper (I) Xanthate/Dithiocarbamate PPh3 Complexes. European Journal of Inorganic Chemistry, 2012(24), 3885–3891.

Rathore, H., Varshney, G., Mojumdar, S., & Saleh, M. (2007). Synthesis, characterization and fungicidal activity of zinc diethyldithiocarbamate and phosphate. Journal of Thermal Analysis and Calorimetry, 90(3), 681–686.

Shahzadi, S., Ali, S., Jabeen, R., & KHOSA, M. K. (2009). [Pd (Me-Xanthate) _2]: Synthesis, Characterization, and X-Ray Structure. Turkish Journal of Chemistry, 33(2), 307–312.

Siddiqi, K. S., & Nishat, N. (2000). Synthesis and characterization of succinimide and phthalevhde dithiocarbamates and their complexes with some transition metal ions. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 30(8), 1505–1518.

Singh, N., Singh, N. K., & Kaw, C. (1989). Synthetic and spectroscopic studies of xanthato-bridged heterobimetallic complexes containing diamagnetic and paramagnetic metal ions. Bulletin of the Chemical Society of Japan, 62(10), 3328–3333.

Solovyev, A. I., Mikheylis, A. V, Plyusnin, V. F., Shubin, A. A., Grivin, V. P., Larionov, S. V, Tkachenko, N. V, & Lemmetyinen, H. (2019). Photochemistry of dithiophosphinate Ni (S2P (i-Bu) 2) 2 complex in CCl4. Transient species and TD-DFT calculations. Journal of Photochemistry and Photobiology A: Chemistry, 381, 111857.

Sreeju, N., Rufus, A., & Philip, D. (2016). Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. Journal of Molecular Liquids, 221, 1008–1021.

Vakalopoulou, E., Buchmaier, C., Pein, A., Saf, R., Fischer, R. C., Torvisco, A., Warchomicka, F., Rath, T., & Trimmel, G. (2020). Synthesis and characterization of zinc di (O-2, 2-dimethylpentan-3-yl dithiocarbonates) bearing pyridine or tetramethylethylenediamine coligands and investigation of their thermal conversion mechanisms towards nanocrystalline zinc sulfide. Dalton Transactions, 49(41), 14564–14575.

Downloads

Published

2024-05-23

How to Cite

Molla-Babaker, M., Khalid, M., & AL-Mukhtar, S. (2024). SYNTHESIS, CHARACTERIZATION, DFT, AND BIOLOGICAL ASSAY OF NEW XANTHATE COMPLEXES WITH NITROGEN BASES : Synthesis, Characterization and DFT Study of 2-Phenoxyethyl Xanthate Ligand and Complexes with Transitions Metals and their Adducts with Nitrogen Base Ligands. Science Journal of University of Zakho, 12(2), 189–207. https://doi.org/10.25271/sjuoz.2024.12.2.1250

Issue

Section

Science Journal of University of Zakho