Using Nikiforov-Uvarov Method to Find the Single-Particle Nuclear States for Harmonic-Oscillator Potential

Authors

  • Aziz H. Rahim University of Sulaimani
  • Nzar R. Abdullah University of Sulaimani

Keywords:

Central potential, Nikiforov-Uvarov method, harmonic oscillator

Abstract

In this study the energy spectrum and Eigenvectors with a special type of central potential will be obtained by using Nikiforov-Uvarov method. The method covers a new algebraic technique to  make an exact diagonalization to find the eigenvalues and eigenvectors of the Hamiltonian of the harmonic oscillator (HO).

Author Biographies

Aziz H. Rahim, University of Sulaimani

Physics department, School of Science, University of Sulaimani, Kurdistan – Region, Iraq.

Nzar R. Abdullah, University of Sulaimani

Physics department, School of Science, University of Sulaimani, Kurdistan – Region, Iraq.

References

Berkdemir C., Generalized Nuclear Woods-Saxon Potential under Relativistic Spin Symmetry Limit, Nuclear Physics A 770 (2006) 32–39.
Flugge S., Practical Quantum Mechanics, Vol. I (Springer, Berlin, 1994).
Ikhdair S. M. and Sever R., Applied Mathematics and Computation 216 (2010) 545–555.
Ikhdair S. M. and Sever R., Exact Solution of the Klein-Gordon Equation for the PT-Symmetric Woods-Saxon Potential by Nikiforov-Uvarov Method,Int. J. Theor. Phys.,46, (2007) 2384–2395.
Niazian R., A Super-symmetry Approach to Hydrogen-like Atom. Under Constant Electromagnetic Field, African Physical Review,4,58, (2010)0008.
Nikiforov F. and . Uvarov V. B, Special Functions of Mathematical Physics (Birkhauser, Basel. 1988).
Ozer O., Eigenvalue Problems of non-Hermitian Systems via Improved Asymptotic Iteration Method, Chin. Phys. Lett., 25,9 (2008)3111.
Ping Z. A, Chao Q. W. and Wen L. Y., Approximate Solutions of the Schrödinger equation for the Eckart Potential and its Parity-Time, Chin. Phys. Lett. 26, 10, (2009).
point canonical transformation, Int. J. Theor. Phys. 46,(2007) 1381.
Setare M. R. and Karimi E., Mapping of shape invariant potentials by the
Sever R., Tezcan C., Yesiltas Ö. and Bucurgat M., Bound state solution of Schrodinger equation for Mie potential, Int J Theor Phys, 47 (2008) 2243–2248.
Srivasta H. M., Mavromatis H. A. and Alassa R. S. , Applied Mathematics Letters 16 (2003) 1131-1136.
Suhonen Jouni ,From nucleons to nucleus, Springer-Verlag Berlin Heidelberg 2007.
Tanaka T., N-fold supersimmetry in quantum systems with position-dependent mass, J.Physics A, Math. Gen 39, (2006) 219-234.
Xu Y., He S. and Jia C. S., Approximate analytical solutions of the Klein–Gordon equation with the Pöschl–Teller potential including the centrifugal term, Phy. Scr. 81 (2010) 045001.
Zhang Min-Cang, Sun Guo-Hua and Dong Shi-Hai, Exactly complete solutions of the Schrödinger equation with a spherically harmonic oscillatory ring-shaped potential, Physics Letters A 374 (2010) 704–708.

Downloads

Published

2018-09-25

How to Cite

Rahim, A. H., & Abdullah, N. R. (2018). Using Nikiforov-Uvarov Method to Find the Single-Particle Nuclear States for Harmonic-Oscillator Potential. Science Journal of University of Zakho, 1(1), 364–371. Retrieved from https://sjuoz.uoz.edu.krd/index.php/sjuoz/article/view/128

Issue

Section

Science Journal of University of Zakho