Numerical Solution of the Bagley-Torvik Equation Using the Integer-Order Derivatives Expansion
Abstract
Numerical solution of the well-known Bagley-Torvik equation is considered. The fractional-order derivative in the equation is converted, approximately, to ordinary-order derivatives up to second order. Approximated Bagley-Torvik equation is obtained using finite number of terms from the infinite series of integer-order derivatives expansion for the Riemann–Liouville fractional derivative. The Bagley-Torvik equation is a second-order differential equation with constant coefficients. The derived equation, by considering only the first three terms from the infinite series to become a second-order ordinary differential equation with variable coefficients, is numerically solved after it is transformed into a system of first-order ordinary differential equations. The approximation of fractional-order derivative and the order of the truncated error are illustrated through some examples. Comparison between our result and exact analytical solution are made by considering an example with known analytical solution to show the preciseness of our proposed approach.
Full text article
Authors
Copyright (c) 2018 Afrah S. Hasan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.