Measurement of Some Argon Plasma Parameters Glow Discharge Under Axial Magnetic Field

  • Pshtiwan M.A. Karim Department of Physics, Faculty of science, University of Zakho, Kurdistan Region - Iraq. https://orcid.org/0000-0003-0533-386X
  • Diyar S. Mayi Centre for material science and nanotechnology, Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq
  • Shamo Kh. Al-Hakary Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region - Iraq.
Keywords: Plasma Physics, Argon Gas, Paschen Law, Magnetic Field, CCS Spectrometer

Abstract

This paper investigates the characteristics some of argon plasma parameters of glow discharge under axial magnetic field. The DC power supply of range (0-6000) V is used as a breakdown voltage to obtain the discharge of argon gas. The discharge voltage-current (V-I) characteristic curves and Paschen’s curves as well as the electrical conductivity were studied with the presents of magnetic field confinement at different gas pressures. The magnetic field up to 25 mT was obtained using four coils of radius 6 cm and 320 turn by passing A.C current up to 5 Amperes. Spectroscopic measurements are employed for purpose of estimating two main plasma parameters electron temperature (Te) and electron density (ne). Emission spectra from positive column (PC) zone of the discharge have been studies at different values of magnetic field and pressures at constant discharge currents of 1.5 mA. Electron temperature (Te) and its density are calculated from the ratio of the intensity of two emission lines of the same lower energy levels. Experimental results show the abnormal glow region characteristics (positive resistance). Breakdown voltage versus pressure curves near the curves of paschen and decrease as magnetic field increases due to magnetic field confinement of plasma charged particles. Also the electrical conductivity increases due to enhancing magnetic field at different gas pressures. Both temperature density of electron and the intensities of two selected emission lines decrease with increasing pressure due decreasing of mean free path of electron. Electron density increase according to enhancing magnetic field, while the intensity of emitting lines tends to decrease.

Author Biographies

Pshtiwan M.A. Karim, Department of Physics, Faculty of science, University of Zakho, Kurdistan Region - Iraq.

Dept. of Physics, Faculty of science, University of Zakho, Kurdistan Region - Iraq (pshtiwan.karim@uoz.edu.krd)

Diyar S. Mayi, Centre for material science and nanotechnology, Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq

Centre for material science and nanotechnology, Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq (diyar.sadiq @uoz.edu.krd)

Shamo Kh. Al-Hakary, Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region - Iraq.

Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq - (shamo.awsi@uoz.edu.krd

References

Aragón, C., Bengoechea, J., & Aguilera, J. A. (2001). Influence of the optical depth on spectral line emission from laser-induced plasmas. Spectrochimica Acta - Part B Atomic Spectroscopy, 56(6), 619–628. https://doi.org/10.1016/S0584-8547(01)00172-0
Avaria, G., Lunk, A., Schröder, A., & Vinogradov, I. P. (2009). Optical and langmuir probe diagnostics in a magnetized hollow cathode arc. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 6, S352–S356. https://doi.org/10.1002/ppap.200930804
Baranov, O., Romanov, M., Kumar, S., Zong, X. X., & Ostrikov, K. (2011). Magnetic control of breakdown: Toward energy-efficient hollow-cathode magnetron discharges. Journal of Applied Physics, 109(6), 063304–063308. https://doi.org/10.1063/1.3553853
Beck, A., Hemmers, D., Kempkens, H., Schweer, H. B., & Uhlenbusch, J. (2000). Comparative measurement of electron density and temperature profiles in low-temperature ECR discharges by a lithium atom beam and Thomson scattering. Journal of Physics D: Applied Physics, 33(4), 360–366. https://doi.org/10.1088/0022-3727/33/4/308
Boogaard, A., Kovalgin, A. Y., Aarnink, A. A. I., Wolters, R. A. M., & Holleman, J. (2006). Measurement of electron temperatures of Argon Plasmas in a High-Density Inductively-Coupled Remote Plasma System by Langmuir Probe and Optical-Emission Spectroscopy. This Work Was Supported by the Dutch Technology Foundation (STW), under Project STW-TEL 6358, 412–418.
C.O. Laux, R.J. Gessman, C.H. Kruger, F. Roux, F. Michaud, S. P. D. (2001). Rotational temperature measurements in air and nitrogen plasmas using the "rst negative system of N. Journal of Quantitative Spectroscopy and Radiative Transfer, 68(4), 473–482. https://doi.org/10.1016/s0022-4073(00)00083-2
Coons, R. W., Harilal, S. S., Polek, M., & Hassanein, A. (2011). Spatial and temporal variations of electron temperatures and densities from EUV-emitting lithium plasmas. Analytical and Bioanalytical Chemistry, 400(10), 3239–3246. https://doi.org/10.1007/s00216-011-4792-y
Danzaki, Y., & Wagatsuma, K. (2001). Effect of acid concentrations on the excitation temperature for vanadium ionic lines in inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 447(1–2), 171–177. https://doi.org/10.1016/S0003-2670(01)01261-2
Eizaldeen F. Kotp and Ashwaq A. AL-Ojeery. (2012). Studies The Effect Of Magnetic Field On Argon Plasma Characteristics. Australian Journal of Basic and Applied Sciences, 6(3), 817–825.
Emission spectroscopy, Linkopings University, IFM – The Department of Physics, Chemistry and Biology, Lab 57. (n.d.).
Forati, E., Piltan, S., Li, A., & Sievenpiper, D. (2016). Experimental study of the interaction between DC discharge microplasmas and CW lasers. Optical Society of America, 24(2), 1495–1506. https://doi.org/10.1364/oe.24.001495
Galaly, A. (2014). The Magnetized Plasma Effect on Cathode Fall Thickness for Helium Gas Discharge. Physical Science International Journal, 4(8), 1088–1099. https://doi.org/10.9734/psij/2014/9605
Gao, S., Chen, S., Ji, Z., Tian, W., & Chen, J. (2017). DC Glow Discharge in Axial Magnetic Field at Low Pressures. Advances in Mathematical Physics, 9193149, 1–8. https://doi.org/10.1155/2017/9193149
Haun, J., Kosse, S., Kunze, H.-J., Schlanges, M., & Redmer, R. (2001). Conductivity of Nonideal Zinc and Carbon Plasmas - Experiments and Theoretical Results. Contributions to Plasma Physics, 41(2–3), 275–278. https://doi.org/10.1002/1521-3986(200103)41:2/3<275::aid-ctpp275>3.3.co;2-k
KANEDA, T. (1978). The influence ona of a transverse magnetic field glow discharge tube. J. Light & Vis. Env., 2(1), 45–50.
Khalaf, M. K., Ali, D. S., & Elttayef, A. K. (2016). Study the effect of longitudinal magnetic field and inter- electrode spacing on argon plasma discharges characteristics with Ti6Al4V alloy electrode. Al-Kut Univ. College Journal, 1(2), 2424–7419.
Kolpaková, A., Kudrna, P., & Tichý, M. (2011). Study of Plasma System by OES ( Optical Emission Spectroscopy ). WDS’11 Proceedings of Contributed Papers, Part II, 180–185.
Konjević, N., Lesage, A., Fuhr, J. R., & Wiese, W. L. (2002). Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (A critical review of selected data for the period 1989 through 2000). J. Phys. Chem. Ref. Data, 31(3), 819–927. https://doi.org/10.1063/1.1486456
Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019, February 8]. National Institute of Standards and Technology, Gaithersburg, MD. (n.d.). Retrieved from https://physics.nist.gov/cgi-bin/ASD/lines1.pl?spectra=cu&limits_type=0&low_w=320&upp_w=525&unit=1&de=0&format=0&line_out=0&en_unit=0&output=0&bibrefs=1&page_size=15&show_obs_wl=1&show_calc_wl=1&unc_out=1&order_out=0&max_low_enrg=&show_av=2&max_upp_enrg=&
Luo, W., Zhao, X., Lv, S., & Zhu, H. (2015). Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy. Pramana - Journal of Physics, 85(1), 105–114. https://doi.org/10.1007/s12043-014-0893-4
M.A. Hassouba. (2001). Effect of the magnetic field on the plasma parameters in the cathode fall region of the DC-glow discharge. The European Physical Journal Applied Physics, 14(2), 131–135. https://doi.org/10.1051/epjap:2001148
Makrinich, G., & Fruchtman, A. (2009). Experimental study of a radial plasma source. Physics of Plasmas, 16(4), 1–8. https://doi.org/10.1063/1.3119688
Marinova, P., Atanasova, M., & Benova, E. (2015). Heavy particles and rate coefficients in HF and MW discharges in Argon at atmospheric pressure. 32nd ICPIG, Iași, Romania, 26(31), 31–33.
Menmuir, S. (2007). Visible spectroscopic diagnostics : Application and development in fusion plasmas (Doctoral Thesis Royal Institute of Technology Stockholm, Sweden). Retrieved from https://www.diva-portal.org/smash/get/diva2:12758/FULLTEXT01.pdf
Michael A. Lieberman and Allan J. Lichtenberg. (2015). Principles of Plasma Discharges for Materials Processing. second edition, John Wiley & Sons, Inc.
Mohammed, S. J., Khalaf, M. K., Majeed, M. A., & Jasem, H. E. (2017). Experimental study on the effect of longitudinal magnetic field on Townsend discharge characteristics in low pressure argon gas. International Journal of ADVANCED AND APPLIED SCIENCES, 4(2), 91–95. https://doi.org/10.21833/ijaas.2017.02.016
Mondal, S., Narayanan, V., Ding, W. J., Lad, A. D., Hao, B., Ahmad, S., … Kumar, G. R. (2012). Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proceedings of the National Academy of Sciences, 109(21), 8011–8015. https://doi.org/10.1073/pnas.1200753109
Munther B. Hassan and Hussain A. Hussein. (2015). The Effect of Magnetic Fields on Helium Plasma Parameters. JOURNAL OF KUFA – PHYSICS, 7(2), 35–39.
Nahox, I., Yoko, U., & Nobuor, I. (2001). Effect of Magnetic-Mirror confinement on Electron Temperature Gontrol in ECR Plasma. J. Plasma Fusion Res., 4(3), 305–308.
Ohno, N., Seki, M., Ohshima, H., Tanaka, H., Kajita, S., Hayashi, Y., … van der Meiden, H. (2019). Investigation of recombination front region in detached plasmas in a linear divertor plasma simulator. Nuclear Materials and Energy, 19, 458–462. https://doi.org/10.1016/j.nme.2019.03.010
Park, H., Choe, W., & Yoo, S. J. (2010). Spatially resolved emission using a geometry-dependent system function and its application to excitation temperature profile measurement. Spectrochimica Acta - Part B Atomic Spectroscopy, 65(12), 1029–1032. https://doi.org/10.1016/j.sab.2010.11.008
Paschen, F. (1889). Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen Der Physik, 37, 69. https://doi.org/10.1002/andp.18892730505
Petraconi, G., Maciel, H. S., Pessoa, R. S., Murakami, G., Massi, M., Otani, C., … Sismanoglu, B. N. (2004). Longitudinal magnetic field effect on the electrical breakdown in low pressure gases. Brazilian Journal of Physics, 34(4B), 1662–1666. https://doi.org/10.1590/s0103-97332004000800028
Qayyum, A., Ikram, M., Zakaullah, M., Waheed, A., Murtaza, G., Ahmad, R., … Chaudhary, K. A. (2003). Characterization of Argon Plasma by Use of Optical Emission Spectroscopy and Langmuir Probe Measurements. International Journal of Modern Physics B, 17(14), 2749–2759. https://doi.org/10.1142/s0217979203018454
Qian, M., Ren, C., Wang, D., Zhang, J., & Wei, G. (2010). Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes. Journal of Applied Physics, 107(6), 063303–063305. https://doi.org/10.1063/1.3330717
Rózsa, K., Gallagher, A., & Donkó, Z. (1995). Excitation of Ar lines in the cathode region of a dc discharge. Physical Review E, Vol. 52, pp. 913–918. https://doi.org/10.1103/PhysRevE.52.913
Safeen, A., Shah, W. H., Khan, R., Shakeel, A., Iqbal, Y., Asghar, G., … Shah, W. H. (2019). Measurement of Plasma Parameters for Copper Using Laser Induced Breakdown Spectroscopy. Digest Journal of Nanomaterials and Biostructures, 14(1), 29–35.
Sherbini, A. M. El, Amer, A. A. S. Al, Hassan, A. T., & Sherbini, T. M. El. (2012). Spectrometric Measurement of Plasma Parameters Utilizing the Target Ambient Gas O I & N I Atomic Lines in LIBS Experiment. Optics and Photonics Journal, 02(04), 286–293. https://doi.org/10.4236/opj.2012.24035
Subedi, D. P., Tyata, R. B., Shrestha, R., & Wong, C. S. (2014). An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon. Frontiers in Physics, AIP Conference Proceedings, 1588, 103–108. https://doi.org/10.1063/1.4867673
Tang, D., Zhao, J., Wang, L., Pu, S., Cheng, C., & Chu, P. K. (2007). Effects of magnetic field gradient on ion beam current in cylindrical Hall ion source. Journal of Applied Physics, 102(12), 4–6. https://doi.org/10.1063/1.2825625
Tkachenko, I. M. (1998). Comment on “Thermodynamic and transport properties of dense hydrogen plasmas.” Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 57(3), 3676–3677. https://doi.org/10.1103/PhysRevE.57.3676
Toma, M. (2005). Negative glow plasma as a converter of electric energy into radiation. Journal of Optoelectronics and Advanced Materials, 7(2), 687–690.
Toma, M., Rusu, I. A., & Dorohoi, D. O. (2008). The influece of external magnetic field on the radiation emitted by negative glow of a DC glow discharge. Rom. Journ. Phys, 53(1–2), 295–301.
Torres, C., Reyes, G., Castillo, F., & Martínez, H. (2012). Paschen law for argon glow discharge. Journal of Physics: Conference Series, 370(1), 012067–4. https://doi.org/10.1088/1742-6596/370/1/012067
Wais, S. I., Mohammed, R. Y., & Yousif, S. O. (2011). Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 5(8), 1226–1231.
Published
2019-12-30
How to Cite
Karim, P., Mayi, D., & Al-Hakary, S. (2019). Measurement of Some Argon Plasma Parameters Glow Discharge Under Axial Magnetic Field. Science Journal of University of Zakho, 7(4), 158-166. https://doi.org/10.25271/sjuoz.2019.7.4.628
Section
Science Journal of University of Zakho