Structural, Electronic and Optical Properties of Cubic Perovskite CsPbX3 (X= Br, Cl and I)

Authors

  • Nawzad A. Abdulkareem Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq
  • Sarkawt A. Sami Dept. of Physics, College of Science, University of Duhok, Kurdistan Region - Iraq
  • Badal H. Elias Dept. of Physics, College of Science, University of Duhok, Kurdistan Region - Iraq

DOI:

https://doi.org/10.25271/sjuoz.2020.8.1.632

Keywords:

Ab initio calculation, Structural, electrical and optical properties, Band gap, Perovskites CsPbX3

Abstract

Plane waves with norm conserving pseudopotentials (PW-PP) method in conjunction with density functional theory (DFT) frame work have been used to investigate structural, electronic and optical properties of lead-halide cubic perovskite CsPbX3 (X=Br, Cl and I). The generalized gradient approximation (GGA), specifically Perdew-Burke-Ernzerhof (PBE) flavor, has been chosen to treat the exchange correlation term of Kohn-Sham equation. Structural parameters are comparable with other theoretical and experimental studies. In spite of good agreement of our band gap values  with other theoretical works, however, they were not comparable when compared to the experimental  values due to the well-known problem of Eg value underestimation of DFT. To update the  value, we have used GW method as a self-consistent quasiparticle method on energies and wave functions and indeed they have been improved. Optical properties have been calculated using density functional perturbation theory (DFPT). Our results show that CsPbX3 (X=Br, Cl, I) has maximum response to the electromagnetic spectrum at low energies (visible region) but minimum response at high energies.

Author Biographies

Nawzad A. Abdulkareem, Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq

Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq - (nawzad.abdulkareem@uoz.edu.krd)

Sarkawt A. Sami, Dept. of Physics, College of Science, University of Duhok, Kurdistan Region - Iraq

Dept. of Physics, College of Science, University of Duhok, Kurdistan Region - Iraq - (sarkawt@uod.ac)

Badal H. Elias, Dept. of Physics, College of Science, University of Duhok, Kurdistan Region - Iraq

Dept. of Physics, College of Science, University of Duhok, Kurdistan Region - Iraq

References

Ahmad, M., Rehman, G., Ali, L., Shafiq, M., Iqbal, R., Ahmad, R., . . . Ahmad, I. (2017). Structural, electronic and optical properties of CsPbX3 (X= Cl, Br, I) for energy storage and hybrid solar cell applications. Journal of Alloys and Compounds, 705, 828-839.
Becker, M. A., Vaxenburg, R., Nedelcu, G., Sercel, P. C., Shabaev, A., Mehl, M. J., . . . Lyons, J. L. (2018). Bright triplet excitons in caesium lead halide perovskites. Nature, 553(7687), 189.
Birch, F. (1947). Finite elastic strain of cubic crystals. Physical review, 71(11), 809.
Castelli, I. E., García-Lastra, J. M., Thygesen, K. S., & Jacobsen, K. W. (2014). Bandgap calculations and trends of organometal halide perovskites. APL Materials, 2(8), 081514.
Chang, Y., Park, C., & Matsuishi, K. (2004). First-principles study of the Structural and the electronic properties of the lead-Halide-based inorganic-organic perovskites (CH~ 3NH~ 3) PbX~ 3 and CsPbX~ 3 (X= Cl, Br, I). Journal-Korean Physical Society, 44, 889-893.
Collins, L., Bickham, S., Kress, J., Mazevet, S., Lenosky, T., Troullier, N., & Windl, W. (2001). Dynamical and optical properties of warm dense hydrogen. Physical Review B, 63(18), 184110.
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., & Huang, J. (2015). Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347(6225), 967-970.
Eperon, G. E., Paterno, G. M., Sutton, R. J., Zampetti, A., Haghighirad, A. A., Cacialli, F., & Snaith, H. J. (2015). Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 3(39), 19688-19695.
Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982-988.
Gesi, K., Ozawa, K., & Hirotsu, S. (1975). Effect of hydrostatic pressure on the structural phase transitions in CsPbCl3 and CsPbBr3. Journal of the Physical Society of Japan, 38(2), 463-466.
Gonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., . . . Côté, M. (2009). ABINIT: First-principles approach to material and nanosystem properties. Computer Physics Communications, 180(12), 2582-2615.
Hartwigsen, C., Gœdecker, S., & Hutter, J. (1998). Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Physical Review B, 58(7), 3641.
Hedin, L. (1965). New method for calculating the one-particle Green's function with application to the electron-gas problem. Physical Review, 139(3A), A796.
Heidrich, K., Schäfer, W., Schreiber, M., Söchtig, J., Trendel, G., Treusch, J., . . . Stolz, H. (1981). Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPb Cl 3 and CsPb Br 3. Physical Review B, 24(10), 5642.
Hu, M., Ge, C., Yu, J., & Feng, J. (2017). Mechanical and optical properties of Cs4BX6 (B= Pb, Sn; X= Cl, Br, I) zero-dimension perovskites. The Journal of Physical Chemistry C, 121(48), 27053-27058.
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., . . . Moser, J. E. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2, 591.
Kohn, W., & Sham, L. (1965). doi: 10.1103/PhysRev. 140. A1133. Phys. Rev. A, 140, 113.
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
Krack, M. (2005). Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theoretical Chemistry Accounts, 114(1-3), 145-152.
Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 6(1), 15-50.
Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758.
Kulbak, M., Cahen, D., & Hodes, G. (2015). How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. The journal of physical chemistry letters, 6(13), 2452-2456.
Lang, L., Yang, J.-H., Liu, H.-R., Xiang, H., & Gong, X. (2014). First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A, 378(3), 290-293.
Lei, J., Gao, F., Wang, H., Li, J., Jiang, J., Wu, X., . . . Liu, S. F. (2018). Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Solar Energy Materials and Solar Cells, 187, 1-8.
Li, X., Cao, F., Yu, D., Chen, J., Sun, Z., Shen, Y., . . . Wu, Y. (2017). All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 13(9), 1603996.
Li, Y., Duan, J., Zhao, Y., & Tang, Q. (2018). All-inorganic bifacial CsPbBr 3 perovskite solar cells with a 98.5%-bifacial factor. Chemical communications, 54(59), 8237-8240.
Li, Z., Yang, M., Park, J.-S., Wei, S.-H., Berry, J. J., & Zhu, K. (2015). Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(1), 284-292.
MØLLER, C. K. (1958). Crystal structure and photoconductivity of caesium plumbohalides. Nature, 182(4647), 1436.
Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188.
Murnaghan, F. (1944). The compressibility of media under extreme pressures. Proceedings of the national academy of sciences of the United States of America, 30(9), 244.
Murtaza, G., & Ahmad, I. (2011). First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M= Cl, Br, I). Physica B: Condensed Matter, 406(17), 3222-3229.
Mutalikdesai, A., & Ramasesha, S. K. (2017). Emerging solar technologies: Perovskite solar cell. Resonance, 22(11), 1061-1083.
Perdew, J. P. (1986). Density functional theory and the band gap problem. International Journal of Quantum Chemistry, 30(3), 451-451.
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
Sharma, S., & Ambrosch-Draxl, C. (2004). Second-harmonic optical response from first principles. Physica Scripta, 2004(T109), 128.
Sharma, S., Weiden, N., & Weiss, A. (1992). Phase diagrams of quasibinary systems of the type: ABX3—A′ BX3; ABX3—AB′ X3, and ABX3—ABX′ 3; X= halogen. Zeitschrift für Physikalische Chemie, 175(1), 63-80.
Song, J., Li, J., Li, X., Xu, L., Dong, Y., & Zeng, H. (2015). Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced materials, 27(44), 7162-7167.
Stoumpos, C. C., Malliakas, C. D., Peters, J. A., Liu, Z., Sebastian, M., Im, J., . . . Freeman, A. J. (2013). Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal growth & design, 13(7), 2722-2727.
Tan, Z.-K., Moghaddam, R. S., Lai, M. L., Docampo, P., Higler, R., Deschler, F., . . . Credgington, D. (2014). Bright light-emitting diodes based on organometal halide perovskite. Nature nanotechnology, 9(9), 687.
Trots, D., & Myagkota, S. (2008). High-temperature structural evolution of caesium and rubidium triiodoplumbates. Journal of Physics and Chemistry of Solids, 69(10), 2520-2526.
Wei, H., Fang, Y., Mulligan, P., Chuirazzi, W., Fang, H.-H., Wang, C., . . . Cao, L. (2016). Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 10(5), 333.
Ye, Y., Run, X., Hai-Tao, X., Feng, H., Fei, X., & Lin-Jun, W. (2015). Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations. Chinese Physics B, 24(11), 116302.
Zhang, L., Zeng, Q., & Wang, K. (2017). Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3. The journal of physical chemistry letters, 8(16), 3752-3758.
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-b., Duan, H.-S., . . . Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546.

Downloads

Published

2020-03-30

How to Cite

Abdulkareem, N. A., Sami, S. A., & Elias, B. H. (2020). Structural, Electronic and Optical Properties of Cubic Perovskite CsPbX3 (X= Br, Cl and I). Science Journal of University of Zakho, 8(1), 23–28. https://doi.org/10.25271/sjuoz.2020.8.1.632

Issue

Section

Science Journal of University of Zakho