The Underlying Pathology of Autoimmune Thyroid Disease is Il-22 Independent

Authors

  • Hadi H. Hamad Dept. of Biology, College of Science, University of Duhok, Kurdistan Region - Iraq.
  • Amir H. Raziq Scientific Research Centre, College of Science, University of Duhok, Kurdistan Region, Iraq.

DOI:

https://doi.org/10.25271/sjuoz.2020.8.2.710

Keywords:

Autoimmune diseases, Anti-TPO, ELISA, IL-22

Abstract

The thyroid gland is frequently associated with autoimmune disease. It produces thyroid hormones responsible for controlling cellular metabolism. The current case control study  involved ninety subjects which were assigned into two equal-numbered groups of patients and apparently healthy controls. For laboratory evaluation, five millilitres of venous blood were withdrawn from individual participants, serum were collected and  stored at –20 oC to be analysed.  Immunoassay technique was used to measure the serum level of thyroid stimulating hormone (TSH), thyroxine (T4), and triiodothyronine (T3). While ELISA technique was used for measuring the serum levels of anti-thyroid peroxidase (anti-TPO) antibodies and IL-22. The results of the current study showed that, in  the patient group, thirty eight (84.44 %) subjects were diagnosed with hypothyroidism, represented by thirty five female (77.77 %) and three male (6.67 %); furthermore, seven individuals (15.56 %) were grouped as hyperthyroid patients and represented by five females  (11.11 %) and two males (4.45 %). The results also demonstrated that the serum  TSH levels  (12.04  ± 2.76) for the patients were significantly (p< 0.05) higher than that of the control group  (1.87 ± 0.15). Whereas, T3 and T4 mean serum levels ± SE were 2.05 nmol/l ±0.14; 100.66 nmol/l ± 4.76 and 2.14 nmol/l ± 0.07; 105.37 nmol/l ± 2.92 for patient and control categories, respectively. The findings of this work showed that mean serum level (IU/ml) of anti-thyroidperoxidase antibody in patient group differed significantly (P <0.05) in comparison to control group  (represented by 259.08±59.99 and 8.71 ±1.23, respectively). No statistical difference was non-significant when comparison involved mean serum concentration levels of IL-22 for patients (157.22 ng/ml ± 24.81) and controls (157.08 ng/ml ± 24.80). In conclusion: IL-22 cannot be proposed as an essential factor participating the development and/or the progression of autoimmune thyroid disease (AITD).

Author Biographies

Hadi H. Hamad, Dept. of Biology, College of Science, University of Duhok, Kurdistan Region - Iraq.

Dept. of Biology, College of Science, University of Duhok, Kurdistan Region - Iraq (hadi.hamad@uod.ac).

Amir H. Raziq, Scientific Research Centre, College of Science, University of Duhok, Kurdistan Region, Iraq.

Scientific Research Centre, College of Science, University of Duhok, Kurdistan Region, Iraq (amir.razig@uod.ac)

References

Al-Rabi, M. W. (2017). Correlation of thyroid antibodies with TSH, T3 and T4 hormones in patients diagnosed with autoimmune thyroid disorders. Pakistan Journal of Pharmaceutical Sciences, volume; 30 (2): 607–612.
Bossowski, A.; Moniuszko, M.; Dabrowska, M.; Rusak, M.; Jeznach, M.; Bodzenta-Łukaszyk, A.; et al., (2013). Role of Th17 cells and IL-17, IL-23 cytokines in pathogenesis of autoimmune thyroid disease in children. Thyroid Researc; 6(Suppl 2): A8.
Brown, C. J. (1999). Skewed X-chromosome inactivation: cause or consequence? J Natl Cancer Inst.; 91: 304-305.
Brown, S. J.; Bremner, A. P.; Hadlow, N. C.; Feddema, P.; Leedman, P. J.; O'Leary, P.C.; et al., (2016). The log TSH–free T4 relationship in a community-based cohort is nonlinear and is influenced by age, smoking and thyroid peroxidase antibody status. Clinical Endocrinology; vol. 85(5): 789–796.
Canaris, G. J.; Manowitz, N. R.; Mayor, G.; and Ridgway, E. C.(2000). The Colorado thyroid disease prevalence study. Arch Intern Med, 160:526–34.
Carmona, C. A. C.; Bedoya, P. A.; Acevedo, J. B.; and Arias, J.A. C. (2018). Prevalence of Thyroid Disorders in an Institution Providing Health Services in Medellin-Colombia. Translational Biomedicine; 9(2): 149.
Cutolo, M.; Capellino, S.; Sulli, A.; Serioli, B.; Secchi, M. E.; Villaggio, B.; et al. (2006). Estrogens and autoimmune diseases. Ann N Y Acad Sci.; 1089: 538-547.
Fardella, C.; Poggi, H.; Gloger, S.; Rojas, A.; Velasquez, C. G.; Barroileth, S.; et al. (2001) Alta prevalencia de enfermedad tiroidea subclínica en sujetos que concurren a control de salud. Rev Med Chil,; 129: 155-160.
Figueroa‑Vega, N.; Alfonso‑Pérez, M.; Benedicto, I.; Sánchez‑Madrid, F.; González‑Amaro, R.; Marazuela, M.; et al., (2010). Increased circulating pro‑inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J Clin Endocrinol Metab., 95: 953‑962.
Flynn, R. V.; MacDonald, T. M.; Morris, A. D.; Jung, R. T.; and Leese, G.P. (2004). The thyroid epidemiology, audit and research study; thyroid dysfunction in the general population. J Clin Endocrinol Metab.; 89:3879–84.
Ghoraishian, S. M.; Hekmati, M. S. H.; and Afkhami-Ardekani, M. (2006). Relationship between anti-thyroid peroxidase antibody and thyroid function test. Iranian Journal of Immunology, vol.; 3(13): 146–149.
Guo, Y.; Zynat, J.; Xing, S.; Xin, L.; Li, S.; Mammat, N.; et al.,(2018) Immunological changes of T helper cells in flow cytometer‑sorted CD4+ T cells from patients with Hashimoto's thyroiditis. EXPERIMENTAL AND THERAPEUTIC MEDICINE; 15: 3596-3602,
Gussekloo, J.; van Exel, E.; de Craen, A. J. M.; Meinders, A. E.; Frölich, M.; and Westendorp, R. G. (2004). Thyroid status, disability and cognitive function, and survival in old age. JAMA; 292: 2591–99.
Hollowell, J. G.; Staehling, N. W.; Flanders, W. D.; Hannon, W. H.; Gunter, E. W.; Spencer, C. A.; et al., (2002) Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab.; 87:489–499.
Jonklaas, J.; Bianco, A. C.; Bauer, A. J.; Burman, K. D.; Cappola, A. R.; Celi, F. S.; et al.; (2014). Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid; 24(12): 1670–1751.
Leese, G. P.; Flynn, R. V.; Jung, R. T.; Macdonald, T. M,.; Murphy, M. J.; and Morris, A. D. (2008). Increasing prevalence and incidence of thyroid disease in Tayside, Scotland: The Thyroid Epidemiology, Audit and Research Study (TEARS). Clin Endocrinol (Oxf); 68: 311–316.
Moudgil, K. D. and Choubey, D. (2011). Cytokines in Autoimmunity: Role in Induction, Regulation, and Treatment. Journal of Interferon & Cytokine Research; 31(10): 695–703.
Okosieme, O.; Gilbert, J.; Abraham, P.; Boelaert, K.; Dayan, C.; Gurnell, M.; et al., (2016). “Management of primary hypothyroidism: statement by the British thyroid association executive committee,” Clinical Endocrinology; volume 84(6): 799–808.
Oliver, J. E.; and Silman, A. J. (2009). Why are women predisposed to autoimmune rheumatic diseases? Arthritis Res Ther.; 11: 252.
Pan, H. F.; Li, X. P.; Zheng, S. G.; and Ye, D. Q. (2013). Emerging role of interleukin-22 in autoimmune diseases. Cytokine Growth Factor Rev.; 24: 51-57.
Pan, H. F.; Zhao, X. F.; Yuan, H.; Zhang, W. H.; Li, X. P.; Wang, G. H.; et al., (2009). Decreased serum IL-22 levels in patients with systemic lupus erythematosus. Clinica Chimica Acta.; 401: 179-180.
Peng, D.; Xu, B.; Wang, Y.; Guo, H. and Jiang, Y.( 2013). A high frequency of circulating Th22 and Th17 cells in patients with new onset Graves’ disease. Plos One; 8(7): 1-8
Prummel, M. F.; and Wiersinga, W. M. (2005). Thyroid peroxidase autoantibodies in euthyroid subjects. Best Pract Res Clin Endocrinol Metab.; 19:1-15.
Przybylik-Mazurek, E.; Hubalewska-Dydejczyk, A.; and Huszno, B. (2007) Hypothyroidism on an autoimmune background. Alergol Immunol; 4: 64-69.
Razvi, S.; Bhana, S.; and Mrabeti, S. (2019). Challenges in Interpreting Thyroid Stimulating Hormone Results in the Diagnosis of Thyroid Dysfunction. Review Article. Journal of Thyroid Research: 1-8.
Rubtsov, A. V.; Rubtsova, K.; Kappler, J. W.; and Marrack, P. (2010). Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev.; 9: 494-498.
Ruggeri, R. M.; Minciullo, P.; Saitta, S.; Giovinazzo, S.; Certo, R.; Campennì, A.; et al., (2014). Serum interleukin-22 (IL-22) is increased in the early stage of Hashimoto’s thyroiditis compared to non-autoimmune thyroid disease and healthy controls. HORMONES; 13(3): 338-344
Rydzewska, M.; Jaromin, M.; Pasierowska,I. E.; Stożek, K.; and Artur Bossowski, A. (2018). Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases. Thyroid Research; 11:2.
Shevach, E. M. (2009) Mechanisms of foxp3+ T regulatory cell mediated suppression. Immunity; 30: 636-645.
Sridevi, A.; Rakesh, B.; Amit, G.; Aiswarya, Y.; Anupam, B.; and Channabasappa, S. (2018). Prevalence of Elevated Anti-Thyroid Peroxidase Antibodies in Subclinical Hypothyroidism. International Journal of Contemporary Medical Research; Volume 5 (3): 2454-7379
Szczeblowska, D.; Hebzda, A.; and Wojtuń, S. (2011) Autoimmune diseases in medical practice. Pediatr Med.; 7: 218-222.
Tipu, H. N.; Ahmed, D.; Bashir, M. M.; and Asif, N. (2018). Significance of Testing Anti-Thyroid Autoantibodies in Patients with Deranged Thyroid Profile. Journal of Thyroid Research: 1-5.
Vanderpump, M. (2005) The epidemiology of thyroid diseases (9th edition) Philadelphia.
Viswanath, D. (2013). Understanding Autoimmune Diseases-A Review. IOSR Journal of Dental and Medical Science; Volume. 6(6): 08-15.

Downloads

Published

2020-06-30

How to Cite

Hamad, H. H., & Raziq, A. H. (2020). The Underlying Pathology of Autoimmune Thyroid Disease is Il-22 Independent. Science Journal of University of Zakho, 8(2), 48–51. https://doi.org/10.25271/sjuoz.2020.8.2.710

Issue

Section

Science Journal of University of Zakho