The Effect of Deposition Time and Sulfurization Temperature on The Optical and Structural Properties of Iron Sulfide Thin Films Deposited from Acidic Chemical Baths

  • Mark Paal Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Isaac Nkrumah Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Francis K. Ampong Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • David Ngbiche Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Robert K. Nkum Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Francis Boakye Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Keywords: Chemical bath deposition, Iron pyrite thin films, Sulfurization, Photovoltaic materials

Abstract

Pyrite phase FeS2 thin films have been grown by a two-stage process of chemical bath deposition followed by sulfurization. Thiourea and thioacetamide were used as sulfur precursors in separate baths.  The deposition time was controlled for 1, 2, and 3 hours respectively. The as-deposited films were sulfurized at temperatures of 250 oC and 500 oC to form the pyrite phase. The effect of deposition time and sulfurization temperature on the structure, morphology and optical properties of the iron pyrite films obtained from the two separate baths were studied and compared. X-ray diffraction analyses established the formation of the pyrite phase in all the films after sulfurization, in addition to iron (II) oxide hydrate as impurities. All films showed further improvement in pyrite formation, crystallinity as well as an increase in crystallite size after sulfurizing at 500 oC. EDAX and SEM microscopy showed that the iron pyrite films produced from the bath containing thiourea, had better crystallinity and a higher iron content. The optical band gap of the iron pyrite films obtained with thiourea, was 2.1, 1.9 and 1.6 eV for the various deposition times. With thioacetamide, the band gap was 1.4 eV, for the deposition time of 3 hours.

Author Biographies

Mark Paal, Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (paalmark@ymail.com)

Isaac Nkrumah, Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (inkrumah.sci@knust.edu.gh)

Francis K. Ampong, Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (fkampong.cos@knust.edu.gh)

David Ngbiche, Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (davidngbiche@gmail.com)

Robert K. Nkum, Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (rknkum.cos@knust.edu.gh)

Francis Boakye, Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Dept. of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (fboakye.sci@knust.edu.gh)

References

Al Khateeb, S., & Sparks, T. D. (2019). Spray pyrolysis of conductor- and binder-free porous FeS2 films for high-performance lithium ion batteries. Journal of Materials Science, 54(5), 4089–4104. https://doi.org/10.1007/s10853-018-3055-0
Aluri, V., Reddy, K. T. R., & Reddy, Y. M. (2015). Polycrystalline and single phase FeS2 films grown by chemical bath deposition. Nanotechnology Reviews, 4(5), 469–472.
Anuar, K., Ho, S. M., Loh, Y. Y., Tan, W. T., & Saravanan, N. (2012). Complexing Agent Effect on the Properties of Iron Sulphide Thin Films. Canadian Journal of Pure and Appllied Sciences., 6(1), 1863–1867.
Banjara, D., Malozovsky, Y., Franklin, L. S., & Bagayoko, D. (2018). First-principles studies of electronic, transport and bulk properties of pyrite FeS2. AIP Advances,.8(2),.25212. https://doi.org/10.1063/1.4996551
Bi, Y., Yuan, Y., Exstrom, C. L., Darveau, S. A., & Huang, J. (2011). Air Stable , Photosensitive , Phase Pure Iron Pyrite Nanocrystal Thin. Nano Letters, 11(1) 4953–4957.
Botchway, E. A., Ampong, F. K., Nkrumah, I., Boakye, F. K., & Nkum, R. K. (2019). Growth of a Pure and Single Phase Iron Sulfide (Pyrite) Thin Film by Electrochemical.Deposition.for.Photovoltaic Applications. Open Journal of Applied Sciences, 9(9), 725–735.
Cabán-Acevedo, M., Faber, M. S., Tan, Y., Hamers, R. J., & Jin, S. (2012). Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. Nano Letters, 12(4), 1977–1982.
Clayton, A. J., Irvine, S. J. C., Barrioz, V., Brooks, W. S. M., Zoppi, G., Forbes, I., Rogers, K. D., Lane, D. W., Hutchings, K., & Roncallo, S. (2011). Metal-organic chemical vapor deposition of ultra-thin photovoltaic devices using a pyrite based p–i–n structure. Thin Solid Films,.519(21),.7360–7363. https://doi.org/https://doi.org/10.1016/j.tsf.2010.12.147
Ezema, F. I., & Ph, D. (2005). Chemical Bath Deposition of Bismuth Chloride Oxide ( BiClO ) Thin Film and its Applications α = A ( α h ν - Eg ) R = ( n-1 ). The Pacific Journal of Science and Technology, 6(1), 6–15.
Hodes, G. (2002). Chemical solution deposition of semiconductor films. CRC press.
Hone, F. G., Ampong, F. K., Abza, T., Nkrumah, I., Nkum, R. K., & Boakye, F. (2015). Investigating the effect of deposition time on the morphology, structure and optical band gap of PbS thin films synthesized by CBD technique. Elixir Thin Film Tech., 76, 28432–28437.
Hone, F. G., Ampong, F. K., Abza, T., Nkrumah, I., Paal, M., Nkum, R. K., & Boakye, F. (2015). The effect of deposition time on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method. Materials Letters, 155(155), 58–61. https://doi.org/10.1016/j.matlet.2015.04.074
Hone, F. G., Ampong, F. K., Nkrumah, I., Nkum, R. K., & Boakye, F. (2015). Effect of deposition temperature on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method. Elixir Thin Film Technology, 183,.320–325. https://doi.org/10.1016/j.matchemphys.2016.08.034
Liu, S., Wu, J., Yu, P., Ding, Q., Zhou, Z., Li, H., Lai, C., Chueh, Y.-L., & Wang, Z. M. (2014). Phase-pure iron pyrite nanocrystals.for.low.cost..photodetectors..Nanoscale Research Letters, 9(1), 549. https://doi.org/10.1186/1556-276X-9-549
Mazón-Montijo, D. A., Nair, M. T. S., & Nair, P. K. (2013). Iron Pyrite Thin Films via Thermal Treatment of Chemically Deposited Precursor Films. ECS Journal of Solid State Science and Technology, 2(11), P465–P470. https://doi.org/10.1149/2.028311jss
Moon, D. G., Rehan, S., Lim, S. Y., Nam, D., Seo, I., Gwak, J., Cheong, H., Cho, Y. S., Lee, Y., & Ahn, S. (2018). Structural, optical and electrical impacts of marcasite in pyrite thin films. Solar Energy,.159,.930–939. https://doi.org/https://doi.org/10.1016/j.solener.2017.11.026
Muniz, F. T. L., Miranda, M. A. R., dos Santos, C., & Sasaki, J. M. (2016). The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A, 72(3), 385–390. https://doi.org/10.1107/S205327331600365X
Ngbiche, D. U., Nkrumah, I., Ampong, F. K., Paal, M., Nkum, R. K., & Boakye, F. K. (2019). Optical and Structural Properties of Chemical Bath Deposited Cadmium Sulphur Selenide (CdS1–xSex (0 ≤ x ≤ 1)) Thin Films. Open Journal of Applied Sciences, 09(11), 785–798. https://doi.org/10.4236/ojapps.2019.911064
Pawar, S. M., Pawar, B. S., & Kim, J. H. (2011). Oh-Shim Joo, CD Lokhande. Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Current Applied Physics, 11(2), 117-161.
Prabukanthan, P., Soukup, R. J., Ianno, N. J., Sarkar, A., Kment, Š., Kmentova, H., Kamler, C. A., Exstrom, C. L., Olejníček, J., & Darveau, S. A. (2010). Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties. 2010 35th IEEE Photovoltaic Specialists Conference, 2965–2969. https://doi.org/10.1109/PVSC.2010.5614465
Richardson, B. J., Zhu, L., & Yu, Q. (2013). Inverted hybrid solar cells based on pyrite FeS2 nanocrystals in P3HT:PCBM.with.enhanced.photocurrent and air-stability. Solar Energy Materials and Solar Cells, 116, 252–261. https://doi.org/https://doi.org/10.1016/j.solmat.2013.05.014
Saeed Akhtar, M., Alenad, A., & Azad Malik, M. (2015). Synthesis of mackinawite FeS thin films from acidic chemical baths. Materials Science in Semiconductor Processing, 32, 1–5. https://doi.org/https://doi.org/10.1016/j.mssp.2014.12.073
Wadia, C., Wu, Y., Gul, S., Volkman, S. K., Guo, J., & Alivisatos, A. P. (2009). Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS2 Nanocrystals. Chemistry of Materials, 21(13),2568–2570. https://doi.org/10.1021/cm901273v
Wang, X., Wang, G., Chen, J., Zhu, X., Tian, J., Jiang, C., Zhang, Y., Liu, X., & Wang, R. (2013). Pyrite thin films prepared for thermal batteries via sulfuring electrodeposited iron sulfide films: Structure and physical properties. Materials.Letters,.110,.144–147. https://doi.org/https://doi.org/10.1016/j.matlet.2013.07.107
Zhao, P., Cui, H., Luan, J., Guo, Z., Zhou, Y., & Xue, H. (2017). Porous FeS2 nanoparticles wrapped by reduced graphene oxide as high-performance Lithium-ion battery cathodes. Materials Letters,.186,.62–65. https://doi.org/https://doi.org/10.1016/j.matlet.2016.09.074
Published
2020-09-30
How to Cite
Paal, M., Nkrumah, I., Ampong, F., Ngbiche, D., Nkum, R., & Boakye, F. (2020). The Effect of Deposition Time and Sulfurization Temperature on The Optical and Structural Properties of Iron Sulfide Thin Films Deposited from Acidic Chemical Baths. Science Journal of University of Zakho, 8(3), 97-104. https://doi.org/10.25271/sjuoz.2020.8.3.752
Section
Science Journal of University of Zakho