The Effect of Deposition Time and Sulfurization Temperature on The Optical and Structural Properties of Iron Sulfide Thin Films Deposited from Acidic Chemical Baths
DOI:
https://doi.org/10.25271/sjuoz.2020.8.3.752Keywords:
Chemical bath deposition, Iron pyrite thin films, Sulfurization, Photovoltaic materialsAbstract
Pyrite phase FeS2 thin films have been grown by a two-stage process of chemical bath deposition followed by sulfurization. Thiourea and thioacetamide were used as sulfur precursors in separate baths. The deposition time was controlled for 1, 2, and 3 hours respectively. The as-deposited films were sulfurized at temperatures of 250 oC and 500 oC to form the pyrite phase. The effect of deposition time and sulfurization temperature on the structure, morphology and optical properties of the iron pyrite films obtained from the two separate baths were studied and compared. X-ray diffraction analyses established the formation of the pyrite phase in all the films after sulfurization, in addition to iron (II) oxide hydrate as impurities. All films showed further improvement in pyrite formation, crystallinity as well as an increase in crystallite size after sulfurizing at 500 oC. EDAX and SEM microscopy showed that the iron pyrite films produced from the bath containing thiourea, had better crystallinity and a higher iron content. The optical band gap of the iron pyrite films obtained with thiourea, was 2.1, 1.9 and 1.6 eV for the various deposition times. With thioacetamide, the band gap was 1.4 eV, for the deposition time of 3 hours.
References
Aluri, V., Reddy, K. T. R., & Reddy, Y. M. (2015). Polycrystalline and single phase FeS2 films grown by chemical bath deposition. Nanotechnology Reviews, 4(5), 469–472.
Anuar, K., Ho, S. M., Loh, Y. Y., Tan, W. T., & Saravanan, N. (2012). Complexing Agent Effect on the Properties of Iron Sulphide Thin Films. Canadian Journal of Pure and Appllied Sciences., 6(1), 1863–1867.
Banjara, D., Malozovsky, Y., Franklin, L. S., & Bagayoko, D. (2018). First-principles studies of electronic, transport and bulk properties of pyrite FeS2. AIP Advances,.8(2),.25212. https://doi.org/10.1063/1.4996551
Bi, Y., Yuan, Y., Exstrom, C. L., Darveau, S. A., & Huang, J. (2011). Air Stable , Photosensitive , Phase Pure Iron Pyrite Nanocrystal Thin. Nano Letters, 11(1) 4953–4957.
Botchway, E. A., Ampong, F. K., Nkrumah, I., Boakye, F. K., & Nkum, R. K. (2019). Growth of a Pure and Single Phase Iron Sulfide (Pyrite) Thin Film by Electrochemical.Deposition.for.Photovoltaic Applications. Open Journal of Applied Sciences, 9(9), 725–735.
Cabán-Acevedo, M., Faber, M. S., Tan, Y., Hamers, R. J., & Jin, S. (2012). Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. Nano Letters, 12(4), 1977–1982.
Clayton, A. J., Irvine, S. J. C., Barrioz, V., Brooks, W. S. M., Zoppi, G., Forbes, I., Rogers, K. D., Lane, D. W., Hutchings, K., & Roncallo, S. (2011). Metal-organic chemical vapor deposition of ultra-thin photovoltaic devices using a pyrite based p–i–n structure. Thin Solid Films,.519(21),.7360–7363. https://doi.org/https://doi.org/10.1016/j.tsf.2010.12.147
Ezema, F. I., & Ph, D. (2005). Chemical Bath Deposition of Bismuth Chloride Oxide ( BiClO ) Thin Film and its Applications α = A ( α h ν - Eg ) R = ( n-1 ). The Pacific Journal of Science and Technology, 6(1), 6–15.
Hodes, G. (2002). Chemical solution deposition of semiconductor films. CRC press.
Hone, F. G., Ampong, F. K., Abza, T., Nkrumah, I., Nkum, R. K., & Boakye, F. (2015). Investigating the effect of deposition time on the morphology, structure and optical band gap of PbS thin films synthesized by CBD technique. Elixir Thin Film Tech., 76, 28432–28437.
Hone, F. G., Ampong, F. K., Abza, T., Nkrumah, I., Paal, M., Nkum, R. K., & Boakye, F. (2015). The effect of deposition time on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method. Materials Letters, 155(155), 58–61. https://doi.org/10.1016/j.matlet.2015.04.074
Hone, F. G., Ampong, F. K., Nkrumah, I., Nkum, R. K., & Boakye, F. (2015). Effect of deposition temperature on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method. Elixir Thin Film Technology, 183,.320–325. https://doi.org/10.1016/j.matchemphys.2016.08.034
Liu, S., Wu, J., Yu, P., Ding, Q., Zhou, Z., Li, H., Lai, C., Chueh, Y.-L., & Wang, Z. M. (2014). Phase-pure iron pyrite nanocrystals.for.low.cost..photodetectors..Nanoscale Research Letters, 9(1), 549. https://doi.org/10.1186/1556-276X-9-549
Mazón-Montijo, D. A., Nair, M. T. S., & Nair, P. K. (2013). Iron Pyrite Thin Films via Thermal Treatment of Chemically Deposited Precursor Films. ECS Journal of Solid State Science and Technology, 2(11), P465–P470. https://doi.org/10.1149/2.028311jss
Moon, D. G., Rehan, S., Lim, S. Y., Nam, D., Seo, I., Gwak, J., Cheong, H., Cho, Y. S., Lee, Y., & Ahn, S. (2018). Structural, optical and electrical impacts of marcasite in pyrite thin films. Solar Energy,.159,.930–939. https://doi.org/https://doi.org/10.1016/j.solener.2017.11.026
Muniz, F. T. L., Miranda, M. A. R., dos Santos, C., & Sasaki, J. M. (2016). The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A, 72(3), 385–390. https://doi.org/10.1107/S205327331600365X
Ngbiche, D. U., Nkrumah, I., Ampong, F. K., Paal, M., Nkum, R. K., & Boakye, F. K. (2019). Optical and Structural Properties of Chemical Bath Deposited Cadmium Sulphur Selenide (CdS1–xSex (0 ≤ x ≤ 1)) Thin Films. Open Journal of Applied Sciences, 09(11), 785–798. https://doi.org/10.4236/ojapps.2019.911064
Pawar, S. M., Pawar, B. S., & Kim, J. H. (2011). Oh-Shim Joo, CD Lokhande. Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Current Applied Physics, 11(2), 117-161.
Prabukanthan, P., Soukup, R. J., Ianno, N. J., Sarkar, A., Kment, Š., Kmentova, H., Kamler, C. A., Exstrom, C. L., Olejníček, J., & Darveau, S. A. (2010). Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties. 2010 35th IEEE Photovoltaic Specialists Conference, 2965–2969. https://doi.org/10.1109/PVSC.2010.5614465
Richardson, B. J., Zhu, L., & Yu, Q. (2013). Inverted hybrid solar cells based on pyrite FeS2 nanocrystals in P3HT:PCBM.with.enhanced.photocurrent and air-stability. Solar Energy Materials and Solar Cells, 116, 252–261. https://doi.org/https://doi.org/10.1016/j.solmat.2013.05.014
Saeed Akhtar, M., Alenad, A., & Azad Malik, M. (2015). Synthesis of mackinawite FeS thin films from acidic chemical baths. Materials Science in Semiconductor Processing, 32, 1–5. https://doi.org/https://doi.org/10.1016/j.mssp.2014.12.073
Wadia, C., Wu, Y., Gul, S., Volkman, S. K., Guo, J., & Alivisatos, A. P. (2009). Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS2 Nanocrystals. Chemistry of Materials, 21(13),2568–2570. https://doi.org/10.1021/cm901273v
Wang, X., Wang, G., Chen, J., Zhu, X., Tian, J., Jiang, C., Zhang, Y., Liu, X., & Wang, R. (2013). Pyrite thin films prepared for thermal batteries via sulfuring electrodeposited iron sulfide films: Structure and physical properties. Materials.Letters,.110,.144–147. https://doi.org/https://doi.org/10.1016/j.matlet.2013.07.107
Zhao, P., Cui, H., Luan, J., Guo, Z., Zhou, Y., & Xue, H. (2017). Porous FeS2 nanoparticles wrapped by reduced graphene oxide as high-performance Lithium-ion battery cathodes. Materials Letters,.186,.62–65. https://doi.org/https://doi.org/10.1016/j.matlet.2016.09.074
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Mark Paal; Isaac Nkrumah; Francis K. Ampong, David Ngbiche, Robert K. Nkum, Francis Boakye
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.