Histopathological Effects of Phytoestrogrn (Genistein) on Thymus Gland of Adult and Post-Natal Female Albino Mice
DOI:
https://doi.org/10.25271/sjuoz.2022.10.2.889Keywords:
Adult female mice, Histopathological changes, Genistein, Post-natal female Mice, Thymus glandAbstract
This study aimed to evaluate how genistein affected the weight and histological structure of the thymus gland in adult and postnatal (P22) female albino mice. Fifteen adult female albino mice and fifteen postnatal (P22) female albino mice were used and divided between two experiments. The animals were divided into three groups (n=5) in each experiment: Group (I), the control group, Group (II), and Group (III), which received 10mg and 50mg genistein/ kg B. W. respectively. In comparison to the control, treatment with 50mg genistein resulted in a significant increase in the weight of the thymus gland in both adult and postnatal mice. When compared to control, treatment with 10mg genistein resulted in a significant increase in this weight in adult females and a significant decrease in the weight of this gland in postnatal mice. Both genistein concentrations had a negative impact on the gland’s histological features. The formation of a "Starry sky" in cortical and medullary regions, an increase in the thickness of regions due to an increase or decrease in the number of T cells depending on genistein concentration, as well as histiocyte hyperplasia and blood vessel congestion, are among these consequences. In conclusion, because genistein affects thymic tissue negatively, it has the potential to create thymic and immunological diseases.
References
pharmacology and therapeutic use. Revue Roumaine de
Chimie. 52(6),537-550.
Cederroth, C. R., & Nef, S. (2009). Soy, phytoestrogens and
metabolism: A review. Mol. Cell Endocrinol., 304
(1-2),30–42.
Cimafranca, M. A., Davila, J., Ekman, G, C., Andrews, R. N.,
Neese, S. L., Peretz, J., Woodling, K. A., Helferich, W.
G., Sarkar, J., Flaws, J. A., Schantz, S. L., Doerge, D. R.
& Cooke, P. S. (2010). Acute and chronic effects of oral
genistein administration in neonatal mice. Biology of
Reproduction, 83,114–121.
Dinsdale, E. C., Chen, J., & Ward, W. E. (2011). Early life
exposure to isoflavones adversely affects reproductive
health in first but not second- generation female CD-1
mice. J. Nutr., 141, 1996-2002.
Eick, G. N., & Thornton, J. W. (2011). Evolution of steroid
receptors from an estrogen-sensitive ancestral
receptor. Mol Cell Endocrinol 334, 31–38.
Gaffer, GH. G., Elgawish, R.A., Abdelrazek H. M.A., Ebaida
H.M., & Taga H.M. (2018). Dietary soy isoflavones
during pregnancy suppressed the immune function in
male offspring albino rats. Toxicology Reports, 5,296-
301.
Javani G., Alihemmati A., Habibi P., Yousefi H., Karimi P.
Ebraheimi V. & Ahmadiasl N. (2019). The Effects of
Genistein on Renal Oxidative Stress and Inflammation of
Ovariectomized Rats. Archive of SID Jundishapur J Nat
Pharm Prod. 14(4), e57149.
Jefferson, W. N., Couse, J. F. Padilla-Banks, E. Korach, K. S., &
Newbold, R. R. (2002). Neonatal exposure to genistein
induces estrogen receptor (ER) alpha expression and
multioocyte follicles in the maturing mouse ovary:
evidence for ER beta-mediated and non-estrogenic actions.
Biol. Reprod., 67,1285-1296.
Jefferson, W. N., Patisaul, H. B., & Williams, C. J. (2012).
Reproductive consequences of developmental
phytoestrogen exposure. Society for Reproduction and
Fertility, 143,247–260.
Jonas, W. B. (2005). Mosby's dictionary of complementary and
alternative medicine, 519 p. St. Louis, MO: Mosby.
Junqueira, L. C., & Carneiros J. (2005). Basic histology. Text and
atlas. 11th ed. Mc Graw tt.11. New York.
Kim, Sh. H., & Park, M. J. (2012). Effects of phytoestrogen on sexual
development. Korean J. Pediatr., 55(8),265-271.
Krishna, N. S. H. (2020). A study of gross and histological structure
of thymus gland in fetuses and adolescent. Indian Journal of
Clinical Anatomy and Physiology, 7(2),230–237
Le-Maire, A., Bourguet, W., & Balaguer, P. (2010). A structural
view of nuclear hormone receptor: endocrine disruptor
interactions. Cell Mol. Life Sci., 67(8),1219-1237.
Li, Y-Q., Xing X-H., Wang H., Weng X-I, Yu Sh-B., & Dong G-Y.
(2012). Dose-dependent effects of genistein on bone
homeostasis in rats' mandibular subchondral bone. Acta
Pharmacol Sin. 33(1). 66–74.
Md-Zin, S. R., Omar, S. Z., Ali Khan, N. L., Musameh, N. I., Das,
S., & Kassim, N. M. (2013). Effects of the phytoestrogen
genistein on the development of the reproductive system of
Sprague Dawley rats. Clinics. 68(2), 253–262.
Michel, M. C., Kuiken, F., & Vedder, I. (2007). Effects of Task
Complexity and Task Condition on Dutch L2. International
Review of Applied Linguistics, 45(3), 241-259.
Miller J. (2020). The early work on the discovery of the function of the
thymus, an interview with Jacques Miller. Cell Death &
Differentiation, 27,396–401
Montani, C., Penza, M., Jeremic, M., Biasiotto, G., La-Sala, G., De-
Felici, M., Ciana, P., Maggi, A., & Di- Lorenzo, D. (2008).
Genistein is an efficient estrogen in the whole-body throughout
mouse development. Toxicological Sciences, 103(1),57–67.
Moutsatsou, P. (2007). The spectrum of phytoestrogens in nature: Our
knowledge is expanding. Hormones. 6, 173–193.
Nagao, T., Yoshimura, S., Saito, Y., Nakagomi, M., Usumi, K., & Ono,
H. (2001). Reproductive effects in male and female rats of
neonatal exposure to genistein. Reproductive Toxicology, 15(4),
399–411.
Nikitovic, D., Tsatsakis, A.M., Karamanos, N.K., & Tzanakakis, G.N.
(2003). The effects of genistein on the synthesis and distribution
of glycosaminoglycans/proteoglycans by two osteosarcoma cells
lines depend on tyrosine kinase and the estrogen receptor density,
Anticancer Res. 23 (2003), 459–464.
Pelletier, G., & El-Alfy, M. (2000). Immunocytochemical localization of
estrogen receptors alpha and beta in the human reproductive
organs. J. Clin. Endocrinol. Metab,85(12),4835–4840.
Patisaul, H. B., & Adewale, H. B. (2009). Long-term effects of
environmental endocrine disruptors on reproductive physiology
and behavior. Front Behav Neurosci, 3, 1–29.
Rasier, G., Toppari, J., Parent, A. S., & Bourguignon, J. P. (2006). Female
sexual maturation and reproduction after prepubertal exposure to
estrogens and endocrine disrupting chemicals: a review of rodent
and human data. Mol. Cell Endocrinol., 254-255,187-201.
Salahshoor MR., Roshankhah S., Hosseni P., & Jalili C. (2018).
Genistein Improves Liver Damage in Male Mice Exposed to
Morphine. Chin. Med J. 131,1598-604.
SAS, (1999). SAS/STAT Users guide, version 8.2, 1st printing. Vol. 2.
SAS institute Inc, SAS campus drive, Gary, North Carolina.
Setchell, K. D. R., & Lydeking-Olsen, E. (2003). Dietary phytoestrogens
and their effect on bone: evidence from in vitro and in vivo,
human observational and dietary intervention studies. Am. J.
Clin. Nutr., 78:593-609.
Setchell, K. D. R., Zimmer-Nechemias, L., Cai, J., & Heubi, J. E. (1997).
Exposure of infants to phyto-oestrogens from soy-based infant
formula. Lancet, 350,23-27.
Steensma, A. (2006). Bioavailability of genistein and its glycoside
genistein. Dissertation, Wageningen University.
Standring, S., Borley, N. R., & Gray, H. (2008). Gray's anatomy: the
anatomical basis of clinical practice. 40th ed., anniversary ed.
[Edinburgh]: Churchill Livingstone/Elsevier.
Strom, B. L., Schinnar, R., Ziegler, E. E., Barnhart, K. T., Sammel, M.
D., Macones, G. A., Stallings, V. A., Drulis, J. M., Nelson, S. E.,
& Hanson, S. A. (2001). Exposure to soy-based formula in
infancy and endocrinological and reproductive outcomes in
young adulthood. Jama. 286,807–814.
Taylor, A. H., & Al-Azzawi, F. (2000). Immunolocalisation of oestrogen
receptor beta in human tissues. J. Mol. Endocrinol. 24(1),145–
155.
Whitten, P.L., & Patisaul, H.B. (2001). Cross-species and interassay
comparisons of phytoestrogen action, Environ. Health
Perspect. 109,5–20.
Yellayi, S. Naaz, A., Szewczykowski, M. A., Sato, T., Woods, J. A.,
Chang, J., Segre, M., Allred, C. D., Helferich, W. G., & Cooke,
P. S. (2002). The phytoestrogen genistein induces thymic and
immune changes: a human health concern. Proc. Natl. Acad.
Sci. U S A., 99,7616–7621.
Yousefi H., Karimi P., Alihemmati A., Alipour MR., Habibi P., &
Ahmadiasl N. (2017). Therapeutic potential of genistein in
ovariectomy-induced pancreatic injury in diabetic rats: The
regulation of MAPK pathway and apoptosis. Iran J Basic Med
Sci. 20(9),1009–1015. doi: 10.22038/IJBMS.2017.9269.
[PubMed: 29085595]. [PubMed Central: PMC5651453].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Zozan Abdullah Ibrahim, Intissar Numman Waheed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.