ENHANCE THE AQUEOUS SOLUBILITY OF DICLOFENAC THROUGH THE SYNTHESIS OF DICLOFENAC-INOSITOL PRODRUG

Authors

  • Hemn Latif Qader Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
  • Omar Abdulrahman alsheikhly Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
  • Hewa Abdulla Hamadameen Hama rtment of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
  • Adnan Burhan Qader Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2024.12.4.1360

Keywords:

Aqueous solubility, Diclofenac, esterification reaction, inositol, prodrug

Abstract

Due to limited aqueous solubility, poor bioavailability makes oral dosage formulations difficult to formulate. Chemical alteration of medicinal compounds improves solubility. Prodrug design is a popular molecular modification method that improves solubility and oral bioavailability. This study aims to synthesize a diclofenac prodrug to enhance aqueous solubility. In this study, diclofenac was esterified with inositol to make a prodrug (DIP), which was identified by 1H-NMR and FT-IR. A computational pharmacokinetic software was used to study DIP's pharmacokinetic profile, and saturation solubility was measured in phosphate buffer (pH 6.8) and 0.1 HCl (pH 1.2) solutions. The ester bands of (C=O) stretch at 1739 cm-1 and the elimination of H signals of carboxylic acid at 10-12 ppm in the 1H-NMR spectrum proved the synthesis of (DIP). Diclofenac solubility increased 827-fold in phosphate buffer solution (p < 0.05) from 0.059± 0.0164 mg/ml to 48.8± 0.034 mg/ml, primarily due to polarity change. The solubility of diclofenac and (DIP) in 0.1 N HCl (pH 1.2) was 0.016± 0.0031 and 0.018± 0.002, respectively. The improvement in solubility in the acidic medium was non-significant (p > 0.05) due to acid hydrolysis of the ester bond between inositol and the drug. The synthesis of diclofenac prodrug can greatly enhance its water solubility.

References

Alsheikhly, O. A., Ganjo, A. R., Abdulrahman, H. S., & Issa, S. Y. (2024). Synthesis of Benzylpenicillin esters and evaluate the change in the anti-bacterial effects by Docking and bacteriological study. Diyala Journal of Medicine, 26(1), 92–105. https://doi.org/10.26505/djm.26017991105

Bizzarri, M., Fuso, A., Dinicola, S., Cucina, A., & Bevilacqua, A. (2016). Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opinion on Drug Metabolism & Toxicology, 12(10), 1181–1196. https://doi.org/10.1080/17425255.2016.1206887

Daravath, B., Naveen, C., Vemula, S., & Tadikonda, R. (2017). Solubility and Dissolution Enhancement of Flurbiprofen by Solid Dispersion Using Hydrophilic Carriers. Brazilian Journal of Pharmaceutical Sciences, 53(4). https://doi.org/10.1590/s2175-97902017000400010

De Souza, H. M. R., Guedes, J. S., Freitas, R. H. C. N., Gelves, L. G. V., Fokoue, H. H., Sant’Anna, C. M. R., Barreiro, E. J., & Lima, L. M. (2022). Comparative chemical and biological hydrolytic stability of homologous esters and isosteres. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 718–727. https://doi.org/10.1080/14756366.2022.2027933

DiNicolantonio, J. J., & O’Keefe, J. H. (2022). Myo-inositol for insulin resistance, metabolic syndrome, polycystic ovary syndrome and gestational diabetes. Open Heart, 9(1), e001894. https://doi.org/10.1136/openhrt-2021-001894

Hamad, H. Q., Taher, S. G., & Aziz, D. M. (2022). Synthesis and Molecular Docking Studies of New Series of Bis-Schiff Bases Thiadiazoles Derived From Disulfides and Thioethers with Potent Antibacterial Properties. Science Journal of University of Zakho, 10(3), 130–139. https://doi.org/10.25271/sjuoz.2022.10.3.932

Hassan, S., & Elias, A. (2014). Synthesis of new diclofenac derivatives by coupling with chalcone derivatives as possible mutual prodrugs. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 239–245. https://doi.org/10.22159/ijpps.2014v6i1.2320

Jornada, D. S., Fernandes, G. F. S., Chiba, D. E., de Melo, T. J. F., Dos Santos, J. L., & Chung, M. C. (2016). The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules, 21(1), 42. https://doi.org/10.3390/molecules21010042

Kaynak, M. S., Buyuktuncel, E., Caglar, H., & Sahin, S. (2015). Determination of regional intestinal permeability of diclofenac and metoprolol using a newly-developed and validated high performance liquid chromatographic method. Tropical Journal of Pharmaceutical Research, 14(1),163–170. https://doi.org/10.4314/tjpr.v14i1.24

Khan, M. A. (2021). Investigating the enhancement of solubility of Poorly Water-Soluble drugs diclofenac sodium by mixed solvency approach. In Book Publisher International (a part of SCIENCEDOMAIN International) (pp. 1–5). https://doi.org/10.9734/bpi/cacs/v6/1926c

Khatri, H., Hussain, S., & Tyagi, S. (2022). Solubility Enhancement Techniques: An Overview. World Journal of Pharmacy and Pharmaceutical Sciences,11(5),468–482. https://doi.org/10.22159/wjpps.2022.v11.i5.468

Liu, Y., Chen, Q., Mou, C., Pan, L., Duan, X., Chen, X., Chen, H., Zhao, Y., Lu, Y., Jin, Z., & Chi, Y. R. (2019). Catalytic asymmetric acetalization of carboxylic acids for access to chiral phthalidyl ester prodrugs. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09445-x

Lobo, S., Li, H., Farhan, N., & Yan, G. (2013). Evaluation of diclofenac prodrugs for enhancing transdermal delivery. Drug Development and Industrial Pharmacy, 40(3), 425–432. https://doi.org/10.3109/03639045.2013.767828

Mirza, M. A. (2021). Solubility enhancement of diclofenac using solid dispersions. International Journal of Pharmaceutics & Pharmacology, 5(1), 1–6. https://doi.org/10.31531/2581-3080.1000154

Pund, S., Mahajan, N., Gangane, P., & Warokar, A. (2021). Enhancement of solubility of diclofenac sodium by pastillation method. Journal of Drug Delivery and Therapeutics, 11(2), 6–10. https://doi.org/10.22270/jddt.v11i2.4756

Rashid, N. Q. N., Bakir, N. M. H., & Baban, N. S. O. (2023). Spectrophotometric determination of Diclofenac Sodium in pure form and in the pharmaceutical preparations. Tikrit Journal of Pure Science, 21(3), 76–80. https://doi.org/10.25130/tjps.v21i3.999

Rubim, A., Rubenick, J., Laporta, L., & Rolim, C. (2014). Development and Validation of A Dissolution Method Using HPLC for Diclofenac Potassium in Oral Suspension. Brazilian Journal of Pharmaceutical Sciences, 50(2). https://doi.org/10.1590/S1984-82502014000200022

Shah, K., Gupta, J. K., Chauhan, N. S., Upmanyu, N., Shrivastava, S. K., & Mishra, P. (2017). Prodrugs of NSAIDs: a review. The Open Medicinal Chemistry Journal, 11(1), 146–195. https://doi.org/10.2174/1874104501711010146

Smith, B. C. (2018). The C=O bond, part VII: Aromatic esters, organic carbonates, and more of the rule of three. Spectroscopy, 33(9), 24–28.

Sopan, P., Nilesh, M., Purushottam, G., & Amol, W. (2021). Enhancement of Solubility of Diclofenac Sodium by Pastillation Method. Journal of Drug Delivery and Therapeutics, 11(2), 6–10. https://doi.org/10.22270/jddt.v11i2.4756

Stella, V. J. (2020). Prodrugs: My Initial Exploration and Where it Led. Journal of Pharmaceutical Sciences, 109(21), 3514–3523. https://doi.org/10.1016/j.xphs.2020.09.037

Suliman, M., Case, K. C., Schmidtke, M. W., Lazcano, P., Onu, C. J., & Greenberg, M. L. (2022). Inositol depletion regulates phospholipid metabolism and activates stress signaling in HEK293T cells. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1867(6), 159137. https://doi.org/10.1016/j.bbalip.2022.159137

Taylor, K. M., & Aulton, M. E. (2021). [Aulton’s Pharmaceutics E-Book]. Elsevier Health Sciences. http://books.google.ie/books?id=H_wqEAAAQBAJ&printsec=frontcover&dq=Aulton%27s+Pharmaceutics&hl=&cd=1&source=gbs_api

Unnisa, A., Huwaimel, B., Almahmoud, S., Abouzied, A. S., Younes, K. M., Anupama, B., Kola, P. K., & Lakshmi, N. V. K. C. (2022). Design, in silico study, synthesis and in vitro evaluation of some N5-(1H-pyrazol-3-yl)-3H-benzo[d]imidazole-2,5-diamine derivatives as potential pancreatic lipase inhibitors for anti-obesity activity. European Review for Medical and Pharmacological Sciences, 26(19), 7245–7255. https://doi.org/10.26355/eurrev_202210_29917

Wang, F., Finnin, J., Tait, C., Quirk, S., Chekhtman, I., Donohue, A. C., Ng, S., D’Souza, A., Tait, R., & Prankerd, R. (2015). The hydrolysis of diclofenac esters: synthetic prodrug building blocks for biodegradable Drug–Polymer conjugates. Journal of Pharmaceutical Sciences, 105(2),773–785. https://doi.org/10.1002/jps.24665

Yadav, V., Jain, P., Alex, T., Mirza, M., & Iqbal, Z. (2021). Solubility Enhancement of Diclofenac Using Solid Dispersions. International Journal of Pharmacy and Pharmacology, 5(1). https://doi.org/10.31531/2581-3080.1000154

Yilmaz, B., & Ciltas, U. (2014). Determination of diclofenac in pharmaceutical preparations by voltammetry and gas chromatography methods. Journal of Pharmaceutical Analysis, 5(3), 153–160. https://doi.org/10.1016/j.jpha.2014.10.005

Downloads

Published

2024-11-10

How to Cite

Qader, H. L., alsheikhly, O. A., Hamadameen Hama, H. A., & Qader, A. B. (2024). ENHANCE THE AQUEOUS SOLUBILITY OF DICLOFENAC THROUGH THE SYNTHESIS OF DICLOFENAC-INOSITOL PRODRUG . Science Journal of University of Zakho, 12(4), 469–476. https://doi.org/10.25271/sjuoz.2024.12.4.1360

Issue

Section

Science Journal of University of Zakho