Forecasting the Ratio of the Rural Population in Iraq Using Box-Jenkins Methodology

Authors

  • Qais M. Abdulqader Technical College of Petroleum and Mineral Sciences\Zakho, Duhok Polytechnic University, Zakho, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2023.11.1.1124

Keywords:

Forcasting, Box-Jenkins, Rural population, ARIMA

Abstract

In this paper, the Box-Jenkins methodology has been applied and ‎used to forecast the ratio of Iraq's ‎rural population from 1960 to 2019. A sample size of (60) observations of the ‎annually rural population ‎of Iraq has been taken. A combination of ‎some adequate time series models has been prepared and ‎‎obtained and some statistical criteria have been used for comparison and model selection. Results of ‎the study concluded ‎that the ARIMA (0,2,1) is an adequate and best model to be used for ‎forecasting ‎the annual ratio of rural population data in Iraq. ‎During the period 2020 to 2030, the ratio of the rural ‎population ‎will keep decreasing gradually, and the percentage of the rural ‎population of Iraq in 2030 ‎will be (27.732).‎

Author Biography

Qais M. Abdulqader , Technical College of Petroleum and Mineral Sciences\Zakho, Duhok Polytechnic University, Zakho, Kurdistan Region, Iraq

Technical College of Petroleum and Mineral Sciences\Zakho, Duhok Polytechnic University, Zakho, Kurdistan Region, Iraq – (qais.mustafa@dpu.edu.krd)

References

J. Dai and S. Chen, “The application of ARIMA model in forecasting population data,” J. Phys. Conf. Ser., vol. 1324, no. 1, 2019, doi: 10.1088/1742-6596/1324/1/012100.

M. Zakria and F. Muhammad, “Forecasting the Population of Pakistan using ARIMA Model,” Pak.J.Agri.Sci, vol. 46, no. 3, pp. 214–223, 2009.

Q. Abdulqader, “Time Series Forecasting Using Arima Methodology with Application on Census Data in Iraq,” Sci. J. Univ. Zakho, vol. 4, no. 2, pp. 258–268, 2016, doi: 10.25271/2016.4.2.116.

S. Ruixia and Z. Na, “Prediction And Analysis of Rural Population in Shaanxi Province Based on Population ‎Development Equation Model,” Eur. J. Res. Reflect. Manag. Sci., vol. 5, no. 1, pp. 60–69, 2017.

A. Guo, X. Ding, F. Zhong, Q. Cheng, and C. Huang, “Predicting the future Chinese population using shared socioeconomic pathways, the sixth national population census, and a PDE model,” Sustain., vol. 11, no. 13, pp. 1–17, 2019, doi: 10.3390/su11133686.

W. Li, Z. Su, and P. Guo, “A prediction model for population change using ARIMA model based on feature extraction,” J. Phys. Conf. Ser., vol. 1324, no. 1, 2019, doi: 10.1088/1742-6596/1324/1/012083.

A. N. M. R. Karim, M. N. Uddin, M. Rana, M. U. Khandaker, M. R. I. Faruque, and S. M. Parvez, “Modeling on population growth and its adaptation: A comparative analysis between bangladesh and india,” J. Appl. Nat. Sci., vol. 12, no. 4, pp. 688–701, 2020, doi: 10.31018/jans.v12i4.2396.

A.-J. Ramya, “A Comparison of the Markov Chains, Artificial Neural Networks, and ARIMA for Forecasting of Iraq’s Population,” J. Al-Rafidain Univ. Coll. Sci., no. 46, pp. 25–49, 2020.

C. Y. Wang, S. J. Lee, “Reginal Population Forecast and Analysis Based on Macine Learning Strategy”, Entropy, Vol. 23, no. 6, pp. 1-12,2021, doi: 10.3390/e23060656.

L. N. C. Estoque, L. M. D. Fuente, R. C. Mabborang, and M. G. Molina,” Forecasting Urban Population Growth in the Philippines Using Autoregressive Integrated Moving Average (ARIMA) Model”, EPRA International Journal of Multidisciplinary Research, Vol. 8, Issue 7,pp. 132-153, 2022, doi: 10.36713/epra10819.

L. Chen, T. MU, X. Li, and J. Dong, “ Population Prediction of Chinese Prefecture- Level Cities Based on Multiple Models”, Sustainability, Vol. 14, Issue 8, pp. 1-23, 2022, doi: 10.3390/su14084844.

I. M. Chakravarti, G. E. P. Box, and G. M. Jenkins, “Time Series Analysis Forecasting and Control.,” Journal of the American Statistical Association, vol. 68, no. 342. p. 493, 1973, doi: 10.2307/2284112.

R. A. Yaffee and M. McGee, Introduction to Time Series Analysis and Forecasting with Applications of SAS and SPSS, vol. 17, no. 2. 2001.

G. E. Box and D. R. Cox, “An analysis of transformations revisited, rebutted,” J. Am. Stat. Assoc., vol. 77, no. 377, pp. 209–210, 1982, doi: 10.1080/01621459.1982.10477788.

P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting - Second Edition. 2002.

T. H. D. Ngo, “The Box-Jenkins Methodology for Time Series Models,” Proc. SAS Glob. Forum 2013 Conf., vol. 6, pp. 1–11, 2013, [Online]. Available: http://support.sas.com/resources/papers/proceedings13/454-2013.pdf.

Robert H. Shumway and D. S. Stoffe, Time Series Analysis and Its Applications With R Examples, Third. Springer Science+Business Media, LLC, 2016.

V. Cerqueira, L. Torgo, and I. Mozetič, “Evaluating time series forecasting models: an empirical study on performance estimation methods,” Mach. Learn., vol. 109, no. 11, pp. 1997–2028, 2020, doi: 10.1007/s10994-020-05910-7.

S. A. Salie Ayalew, “Comparison of New Approach Criteria for Estimating the Order of Autoregressive Process,” IOSR J. Math., vol. 1, no. 3, pp. 10–20, 2012, doi: 10.9790/5728-0131020.

H. R. Makridakis S, Wheelwright SC, Forecasting methods and applications, Third. Jhon Wiley and Sons,INC., 1997.

R. S. Tsay, Analysis of financial time series, Second. John Wiley & Sons, Inc.‎, 2010.

G. E. P. Box and D. A. Pierce, “Distribution of residual autocorrelations in autoregressive-integrated moving average time series models,” J. Am. Stat. Assoc., vol. 65, no. 332, pp. 1509–1526, 1970, doi: 10.1080/01621459.1970.10481180.

C. Brooks and S. Tsolacos, Real Estate Modelling and Forecasting, First. New York, USA: Cambridge University Press, 2010.

https://www.macrotrends.net/countries/IRQ/iraq/rural-population

Downloads

Published

2023-02-20

How to Cite

Abdulqader , Q. M. (2023). Forecasting the Ratio of the Rural Population in Iraq Using Box-Jenkins Methodology. Science Journal of University of Zakho, 11(1), 134–138. https://doi.org/10.25271/sjuoz.2023.11.1.1124

Issue

Section

Science Journal of University of Zakho