EXPERIMENTAL STUDY OF SOME PROPERTIES OF THE SPARKING DISCHARGE IN ATMOSPHERIC AIR

Authors

  • Shamil K. Talal

DOI:

https://doi.org/10.25271/sjuoz.2024.12.1.1231

Keywords:

Spark discharge, Micro discharge, filaments, atmospheric discharge, PACS: 52.80.-s, 52.80. Mg

Abstract

The current experimental study investigates some aspects of the electrical discharge properties between two planar electrodes. These properties involve the relationships of the minimum sparking potential to the electrode separation, the spark repetition rate, and the distribution of discharge pulse height concerning both the applied voltage and electrode separation. These discharge parameters tend to show nonlinear relationship with both applied voltage and electrode separation.

References

Williams E. H., “The Nature of Spark Discharge at Very Small Distances.” PHYSICAL REVIEW, Vol. XXXI., No.3,September, (1910)

BRITTON L. G.,” Avoiding Static Ignition Hazards in Chemical Operations” CENTER FOR CHEMICAL PROCESS SAFETY of the American Institute of Chemical Engineers (1999)

Thomas H. Pratt T. H., “Electrostatic Ignitions of Fires and Explosions” American Institute of Chemical Engineers (2000)

Arun1 J., Kumar S. P., Venkatesh M., Giridharan A. S. “Reliability Study on Spark Plugs Using Process Failure Mode and Effect Analysis”International Journal of Engineering Research and Development Vol.9, Iss. 2 ( 2013), PP. 13-21

WANG Q., ZHENG Y., YU J., JIA J. “Circuit model and parasitic parameter extraction of the spark plug in the ignition system” Turk J Elec Eng & Comp Sci, Vol.20, No.5, (2012)

Peters M. F., Blackburn G. F., Hannen P. T., “Electrical Character of the Spark Discharge of Automotive Ignition Systems” Journal of Research of the National Bureau of Standards, Vol. 19,( October 1937)

Idota Y. “ Measurement of the Equivalent Ratio in Spark Plug Gap for Low Emission Combustor” R&D Review of Toyota CRDL Vol. 38 No. 4 (2003)

Krige J. “ History of CERN III “ Google Books Elsevier (1996)

Lindsey F. Gaunt, Clive B. Beggs, and George E. Georghiou, “Bactericidal Action of the Reactive Species Produced by Gas-Discharge Nonthermal Plasma at Atmospheric Pressure: A Review “IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol. 34, No. 4, (AUGUST 2006)

Shimizu T., Zimmermann J. L. and Morfill G. E., “Inactivation effect using surface microdischarge plasma “22nd International Symposium on Plasma Chemistry July 5-10; Antwerp, Belgium (2015)

Zaaba S. K., Hirayama-Katayama K., Akitsu T., Shimizu N., and Imanishi Y., “Study on the Antifungal Effect Atmospheric-Pressure Microplasma Excited by High-Repetition-Rate Inductive Energy Storage “International Journal of Plasma Environmental Science and Technology Vol.3, No.2, (SEPTEMBER 2009)

Shimizu, Y.; Koga, K.; Sasaki, T.; Mariotti, D.; Terashima, K.;

Koshizaki,N., "Localized deposition ofmetallicmolybdenum particles In ambient air using atmospheric-pressure microplasma," Microprocesses and Nanotechnology, 2007 Digest of papers , vol., no., pp.174-175, 5-8 (Nov. 2007)

Benedikt J., Raballand V., Yanguas-Gil A., Focke K. and von

Keudell A., “Thin film deposition by means of atmospheric pressuremicroplasma jet “Plasma Phys. Control. Fusion 49 (2007) B419-B427

Raballand V, Benedikt J., Hoffmann S., Zimmermann M., and

von Keudell A., “Deposition of silicon dioxide films using an atmospheric pressure microplasma jet “JOURNAL OF APPLIED PHYSICS 105, 083304 (2009)

McKenna J., Schmidt M., Maguire P., Mariotti D., “ Synthesis of ilicon Carbide Nanoparticles using an Atmospheric Pressure Microplasma Reactor” 30th ICPIG, August 28th– September 2nd Belfast, Northern Ireland, UK (2011)

Galaly A. R., “Nano-Coating Process for Si [1 0 0] Wafer Using

Atmospheric Pressure Plasma Jet (APPJ)” Journal of Modern Physics, (2012), 3, 1031-1039, Stefanovic I., “Light emission profiles of a parallel plate, dc micro discharge in different discharge modeExperimental Physics II , University of Bochum, Germany Application Note (June 2011)

Kothnur P. S., Yuan X. , and , Raja L. L., “Structure of direct-current microdischarge plasmas in helium “App. Phys. Let. Vol 82 No. 4 27 (Jan 2003)

Machala Z., Marode E., Laux C. O., and Kruger C. H., “ DC Glow Discharges in Atmospheric Pressure Air “J. Adv. Oxid. Technol. Vol. 7, No. 2, (2004)

Wang X., Yang Q., Yao C., Zhang X. and Sun C., “Dielectric

Barrier Discharge Characteristics of Multineedle-to-Cylinder Configuration “Energies, 4, 2133-2150 (2011)

Eden J. G., Gao C. J., W. J., Ostrom N. P., and Park S. J. “Microdischarge array-assisted ignition of a high-pressure discharge:Application to arc lamps” App. Phys. Lett. Vol. 79, No. 26 24 (Dec 2001)

Nayak G., Du Y., Brandenburg R., and Bruggeman P. J. “Effect of air flow on the micro-discharge dynamics in an array of integrated coaxial microhollow dielectric barrier discharges” 2017 Plasma Sources Sci. Technol. 26 035001DOI 10.1088/1361-6595/aa56a4

Tay W. H., Kausik S. S., Yap S. L., and Wong C. S., “Role of

secondary emission on discharge dynamics in aatmospheric

pressure dielectric barrier discharge “ Physics of Plasmas 21, 044502 (2014)

Rousseau A., and Aubert X., “Self-pulsing microplasma at mediumpressure range in argon “J. Phys. D: Appl. Phys. 39 (2006)

Nguyen-Smith R. T., Böddecker A. , Schücke L., Bibinov N., Korolov I. , Zhang Q. Z. , Mussenbrock T. , Awakowicz P., and Schulz J. “μs and ns twin surface dielectric barrier discharges operated in air: from electrode erosion to plasma characteristics” Plasma Sources Sci. Technol. 31 (2022) 035008 (16pp) https://doi.org/10.1088/1361-6595/ac5452

Naz M. Y., Ghaffar A. , Rehman N. U. , Shukrullah S., and Ali M. A., “OPTICAL CHARACTERIZATION OF 50 HZ ATMOSPHERIC PRESSURE SINGLE DIELECTRIC BARRIER DISCHARGE PLASMA” Progress In Electromagnetics Research M, Vol. 24, 193–207, 2012

Guo Y. B. and Honga F. C. N. “Radio-frequency microdischarge

arrays for large-area cold atmospheric plasma generation” App. Phys. Lett. Vol 82, No. 3 20 (Jan 2003)

Shah A. K., Shrestha R., Sah R. L., Nakarmi J. J., and Mishra L. N. “EXPERIMENTAL STUDY OF DIELECTRIC BARRIER DISCHARGE IN AN ATMOSPHERIC AIR PRESSURE AND ITS ELECTRICAL CHARACTERIZATION” JP Journal of Heat and Mass Transfer Volume 30, 2022, Pages 135-150 http://dx.doi.org/10.17654/0973576322060

JASIŃSKI M., KROPLEWSKI L., ZAKRZEWSKI Z, and MIZERACZYK J., “ATMOSPHERIC PRESSURE MICROWAVE MICROPLASMA SOURCES “Chem. Listy 102, s1322−s1326 (2008)

MIZERACZYK J. , HRYCAK B., JASIŃSKI M., DORS M.,

“ Low-temperature microwave microplbiodecontamination “ PRZEGLĄD ELEKTROTECHNICZNY R. 88 NR 9b(2012)

Brandenburg R·, Becker K. H., and Weltmann K. D.” Barrier Discharges in Science and Technology Since 2003: ATribute and Update” Plasma Chemistry and Plasma Processing(2023)43:1303133https://doi.org/10.1007/s11090-023-10364-5

Tong L., “Simulation of an Atmospheric Pressure Direct Current

Microplasma Discharge in He/N2 “ Proceedings of the COMSOL conference Boston US (2011)

Gunther Steinle G., Neundorf D., Hiller W. and Pietralla M., “Two-dimensional simulation of filaments in barrier discharges “J. Phys. D: Appl. Phys. 32 (1999)

Georghiou G. E., Papadakis A. P., Morrow R., and Metaxas A. C. Numerical modelling of atmospheric pressure gadischarges leading To plasma production” J. Phys. D: Appl. Phys. 38 (2005)

Bondarenko P. N., Emelyanov O. A., Shemet M. V., “ Investigation of Single Dilelectric Barrier Discharge in Submillimeter Air Gap: Uniform Field “ Technical Physics Vol. 59 No. 6 (2014)

Fujita H., Kouno T., Noguchi Y., and Ueguri S., “Breakdown

voltages of gaseous N2 and air from normal to cryogenic

temperatures” CRYOGENICS . (APRIL 1978) 195-200.

Downloads

Published

2024-02-29

How to Cite

Talal, S. K. (2024). EXPERIMENTAL STUDY OF SOME PROPERTIES OF THE SPARKING DISCHARGE IN ATMOSPHERIC AIR. Science Journal of University of Zakho, 12(1), 81–86. https://doi.org/10.25271/sjuoz.2024.12.1.1231

Issue

Section

Science Journal of University of Zakho