PHYLOGENETIC STUDY OF TEN SPECIES FROM CENTAUREA (ASTERACEAE) IN DUHOK CITY, KURDISTAN REGION-IRAQ
DOI:
https://doi.org/10.25271/sjuoz.2024.12.3.1279Keywords:
Phylogenetic Study, Centaurea, Asteraceae, Duhok, Kurdistan, IraqAbstract
The current research aimed to estimate the evolutionary relationships of ten Centaurea L. species growing naturally in the Duhok City, Kurdistan region of Iraq. The combing Start Codon Targeted (SCoT) markers with Internal Transcribed Spacer (ITS) gene region barcode were performed. To detect the DNA sequence variations and phylogenetic tree reconstruction, the Dice similarity matrix, the unweighted pair group method with arithmetic mean (UPGMA) clustering and Maximum Likelihood (ML) methods were applied. 104 polymorphic bands were scored with an average of 10.4. The Polymorphic Information Content (PIC) and Resolving Power (Rp) values ranged between (0.24 to 0.36) and 3.4 in primer (SCoT1) to 12 in primer (SCoT53) with an average of 0.319 and 5.74 respectively. The lowest similarity value was 0.52 between C. behen L. and C. solstitialis L., while the highest was 0.82 between C. balsamita and C. rigida. The reconstructed polytomous dendrogram was as follows: clade one; C. solstitialis L.; clade 2, C. balsamita Lam. and C. virgata Lam.; clade three subdivide into two subclades: C. iberica Trev. ex Spreng., C. hayalolepis Boiss., C. brugueriana (DC) Hand. Mazz. and C. gigantea Sch. Bip. Ex Boiss., C. regia Boiss., C. rigida Banks & Sol., C. behen Lam. Furthermore, C. brugueriana (DC) Hand. Mazz., C. iberica Trev. ex Spreng, C. behen L., C. solstiotialis L. and C. balsamita Lam. were nested with National Center for Biotechnology Information (NCBI). In contrast, the remaining taxa were mixed with other closely related species. Thus, ScoT markers and ITS DNA barcode were considerably effective for investigating the evolutionary relationships of Centaurea taxa.
References
Álvarez, I.J.F.W. and Wendel, J.F., 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular phylogenetics and evolution, 29(3), pp.417-434. https://doi.org/10.1016/S1055-7903(03)00208-2
Arnelas, I., Pérez-Collazos, E., Devesa, J.A., López, E. and Catalan, P., 2018. Phylogeny of highly hybridogenous Iberian Centaurea L.(Asteraceae) taxa and its taxonomic implications. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 152(5), pp.1182-1190. https://doi.org/10.1080/11263504.2018.1435569
Atasagun, B., 2022. Assessment of the genetic diversity of a critically endangered species Centaurea amaena (Asteraceae). Archives of Biological Sciences, 74(4), pp.325-332. https://doi.org/10.2298/ABS220826031A
Atia, M.A.M., El-Moneim, D.A., Abdelmoneim, T.K., Reda, E.H., Shakour, Z.T.A., El-Halawany, A.M., El-Kashoury, E.S.A., Shams, K.A., Abdel-Azim, N.S. and Hegazy, M.E.F., 2021. Evaluation of genetic variability and relatedness among eight Centaurea species through CAAT-box derived polymorphism (CBDP) and start codon targeted polymorphism (SCoT) markers. Biotechnology & Biotechnological Equipment, 35(1), pp.1230-1237. https://doi.org/10.1080/13102818.2021.1960891
Feng, S.G., He, R.F., Jiang, M.Y., Lu, J.J., Shen, X.X., Liu, J.J., Wang, Z.A. and Wang, H.Z., 2016. Genetic diversity and relationships of medicinal Chrysanthemum morifolium revealed by start codon targeted (SCoT) markers. Scientia Horticulturae, 201, pp.118-123. https://doi.org/10.1016/j.scienta.2016.01.042
Font, M., Garcia-Jacas, N., Vilatersana, R., Roquet, C. and Susanna, A., 2009. Evolution and biogeography of Centaurea section Acrocentron inferred from nuclear and plastid DNA sequence analyses. Annals of Botany, 103(6), pp.985-997. https://doi.org/10.1093/aob/mcp022
Funk, V.A. ed., 2009. Systematics, evolution, and biogeography of Compositae (pp. 171-189). Vienna: International Association for Plant Taxonomy.
Garcia Jacas, N.Ú.R.I.A. and Susanna de la Serna, A., 1992. Karyological notes on Centaurea sect. Acrocentron (Asteraceae). Plant Systematics and Evolution, 179(1-2), pp.1-18.
Garcia-Jacas, N., Soltis, P.S., Font, M., Soltis, D.E., Vilatersana, R. and Susanna, A., 2009. The polyploid series of Centaurea toletana: Glacial migrations and introgression revealed by nrDNA and cpDNA sequence analyzes. Molecular Phylogenetics and Evolution, 52(2), pp.377-394. https://doi.org/10.1016/j.ympev.2009.03.010
Garcia-Jacas, N., Susanna, A., Garnatje, T. and Vilatersana, R., 2001. Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Annals of Botany, 87(4), pp.503-515. https://doi.org/10.1006/anbo.2000.1364
Garcia-Jacas, N., Susanna, A., Mozaffarian, V. and Ilarslan, R., 2000. The natural delimitation of Centaurea (Asteraceae: Cardueae): ITS sequence analysis of the Centaurea jacea group. Plant systematics and evolution, 223, pp.185-199.
Ghazanfar, S.A., Edmondson, J.R. and Hind, J.N., 2019. Flora of Iraq, vol. 6. Royal Botanic Gardens, Kew, London.
Greuter, W., 2003. The Euro Med treatment of Cardueae (Compositae)—generic concepts and required new names. Willdenowia, 33(1), pp.49-61. https://doi.org/10.3372/wi.33.33104
Hellwig, F.H., 2004. Centaureinae (Asteraceae) in the Mediterranean–history of ecogeographical radiation. Plant Systematics and Evolution, 246(3-4), pp.137-162. DOI 10.1007/s00606-004-0150-2
Herrando-Moraira, S., Calleja, J.A., Galbany-Casals, M., Garcia-Jacas, N., Liu, J.Q., López-Alvarado, J., López-Pujol, J., Mandel, J.R., Massó, S., Montes-Moreno, N. and Roquet, C., 2019. Nuclear and plastid DNA phylogeny of tribe Cardueae (Compositae) with Hyb-Seq data: A new subtribal classification and a temporal diversification framework. Molecular Phylogenetics and Evolution, 137, pp.313-332. https://doi.org/10.1016/j.ympev.2019.05.001
Hilpold, A., Garcia-Jacas, N., Vilatersana, R. and Susanna de la Serna, A., 2014. Taxonomical and nomenclatural notes on Centaurea: A proposal of classification, a description of new sections and subsections, and a species list of the redefined section Centaurea. https://doi.org/10.3989%2Fcollectbot.2013.v33.001
Hilpold, A., Vilatersana, R., Susanna, A., Meseguer, A.S., Boršić, I., Constantinidis, T., Filigheddu, R., Romaschenko, K., Suárez-Santiago, V.N., Tugay, O. and Uysal, T., 2014. Phylogeny of the Centaurea group (Centaurea, Compositae)–geography is a better predictor than morphology. Molecular phylogenetics and evolution, 77, pp.195-215. https://doi.org/10.1016/j.ympev.2014.04.022
Hollingsworth, P.M., 2011. Refining the DNA barcode for land plants. Proceedings of the National Academy of Sciences, 108(49), pp.19451-19452. https://doi.org/10.1073/pnas.1116812108
Hussein A. E. and Jubrael, H. (2021). Aflp Marker In Genetic Diversity Assessment of Fig (Ficus Carica L.) Populations in Kurdistan Region – Iraq. Iraqi Journal of Agricultural Sciences, 52(4), 859-867. https://doi.org/10.36103/ijas.v52i4.1393.
Jamshidi, B., Etminan, A., Mehrabi, A.M., Pour-Aboughadareh, A., Shooshtari, L. and Ghorbanpour, M., 2024. Genetic diversity of Artemisia species based on CAAT-box derived polymorphism (CBDP) and start codon targeted (SCoT) markers. Genetic Resources and Crop Evolution, pp.1-11. https://doi.org/10.1007/s10722-024-01891-x
Jedrzejczyk, I., 2020. Genome size and SCoT markers as tools for identification and genetic diversity assessment in Echinacea genus. Industrial crops and products, 144, p.112055. https://doi.org/10.1016/j.indcrop.2019.112055
Kamińska, M., Tretyn, A. and Trejgell, A., 2020. Genetic stability assessment of Taraxacum pieninicum plantlets after long-term slow growth storage using ISSR and SCoT markers. Biologia, 75, pp.599-604. https://doi.org/10.2478/s11756-019-00377-x
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C. and Thierer, T., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), pp.1647-1649. https://doi.org/10.1093/bioinformatics/bts199
López-Alvarado, J., Mameli, G., Farris, E., Susanna, A., Filigheddu, R. and Garcia-Jacas, N., 2020. Islands as a crossroad of evolutionary lineages: A case study of Centaurea sect. Centaurea (Compositae) from Sardinia (Mediterranean Basin). PloS one, 15(2), p.e0228776. https://doi.org/10.1371/journal.pone.0228776
López-Vinyallonga, S., López-Pujol, J., Constantinidis, T., Susanna, A. and Garcia-Jacas, N., 2015. Mountains and refuges: Genetic structure and evolutionary history in closely related, endemic Centaurea in continental Greece. Molecular phylogenetics and evolution, 92, pp.243-254. https://doi.org/10.1016/j.ympev.2015.06.018
Manimekalai R, Nagarajan P (2006) Interrelationships among coconut (Cocos nucifera L.) accessions using RAPD markers. Genet. Resour. Crop. Evol. 53: 1137–1144. DOI 10.1007/s10722-005-1303-z
Mirzaei, S., & Salari, H. (2022). Study on the genetic diversity of tomato's cultivars via scot marker. Agricultural Biotechnology Journal. 13(4), 101-120. 10.22103/JAB.2021.15310.1202
Özbek, M.U., 2021. Centaurea kirikkalensis (Asteraceae), a new species from Turkey. Nordic Journal of Botany, 39(7). https://doi.org/10.1111/njb.03235
Posada, D. and Crandall, K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics,14(9), pp. 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
Prevost, A., Wilkinson, M.J., 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98, 107–112.
Rohlf, F.J., 1998. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, Version 2.00. Exeter Software. Setauket, New York.
Roldan-Ruiz, I., Dendauw, J., VanBockstaele, E., Depicker, A., De Loose, M., 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 6, 125–134.
Şirin, E., Uysal, T., Bozkurt, M. and Ertuğrul, K., 2022. Karyomorphological, molecular and morphological evidence for a new species, Centaurea mengenensis (Asteraceae), from Turkey. Nordic Journal of Botany, 2022(4), p.e03389. https://doi.org/10.1111/njb.03389
Susanna, A. and Garcia-Jacas, N., 2007. Tribe Cardueae. The families and genera of vascular plants, 8, pp.123-147.
Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition/transversion and g + c content biases. Mol. Biol. Evol. 9, 678–687.
Tamura, K., Stecher, G. and Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), pp.3022-3027. https://doi.org/10.1093/molbev/msab120
Thompson, J.D., Gibson, T.J. and Higgins, D.G., 2003. Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics, (1), pp.2-3. https://doi.org/10.1002/0471250953.bi0203s00
Uysal, T., Bozkurt, M., Tugay, O., Ertuğrul, K., Şimşek Sezer, E.N. and Köse, Y.B., 2017. Karyomorphology of Turkish species in Centaurea sections Centaurea and Phalolepis (Asteraceae) and implications for taxonomy. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 151(6), pp.949-964. https://doi.org/10.1080/11263504.2016.1218967
Wagenitz, G. 1980. Centaurea. – In: Rechinger, K. H. (ed.), Flora Iranica 139b. Akademische Druck und Verlagsanstalt, pp. 313–420.
Wagenitz, G. and Hellwig, F.H., 2000. The genus Psephellus Cass.(Compositae, Cardueae) revisited with a broadened concept. Willdenowia, 30(1), pp.29-44. https://doi.org/10.3372/wi.30.30102
Wagenitz, G., 1955. Pollenmorphologie und Systematik in der Gattung Centaurea L. s. 1. Flora oder Allgemeine Botanische Zeitung, 142(2), pp.213-279.
Weigand F., Baum and Udupa S. (1993). DNA Molecular Marker Techniques. Technical Manual No.20. International Center for Agricultural Research in the Dry Areas (ICARDA). Aleppo, Syria.
White, T.J., Bruns, T., Lee, S.J.W.T. and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), pp.315-322.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rizgar Y. Ismail, Jotyar J. Muhammed , Dalal Y. Khudhur
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.