PHYSICS PERSPECTIVES ON HUMAN LOCOMOTION: INVESTIGATING THE MECHANICS OF WALKING PATTERNS

Authors

  • Rayan Basheer M. Ameen Physics Department, College of Science, The University of Duhok, Zakho Street 38, 1006 AJ Duhok, P.O Box 78, Iraq
  • Dilveen W. Mohammed Physics Department, College of Science, The University of Duhok, Zakho Street 38, 1006 AJ Duhok, P.O Box 78, Iraq
  • James Bowen Department of Engineering and Innovation, Open University, Walton Hall, Milton Keynes MK7 6AA, UK

DOI:

https://doi.org/10.25271/sjuoz.2024.12.4.1352

Keywords:

Biomechanics, gait parameters, kinematic, dynamics, gender

Abstract

This study investigated the gait metric differences between males and females aged 18 to 22. Our investigation revealed some significant changes in gait metrics between the two genders. Firstly, males exhibited greater leg and step lengths than females. Males exhibited wider strides, suggesting typical anthropometric variations. Except for BMI and cadence, males had more variation in practically every other gait metric, whereas females had more variability.

There was a non-significant positive connection between BMI and gait metrics such as height, stride length, and step width, with BMI having a minor effect on those measures.  Overall, both genders showed a distinct pattern of variability, revealing individual variances in gait analysis across the same genders.

A direct correlation was observed between the Froude number and height, indicating that individuals with a higher Froude number exhibit a more dynamic and faster walking style. This phenomenon can be ascribed to the biomechanical superiority that taller individuals may possess, enabling them to generate longer strides and achieve higher speeds.

A thorough study of walking speed and gait parameters revealed difficulty in finding the right balance between stability, efficiency, and speed in human movement. Understanding these connections will help people develop more efficient training programs, assistive technologies, and more efficient and safe walking in general.

References

Ahad, M. A. R., Ngo, T. T., Antar, A. Das, Ahmed, M., Hossain, T., Muramatsu, D., Makihara, Y., Inoue, S., & Yagi, Y. (2020). Wearable sensor-based gait analysis for age and gender estimation. Sensors (Switzerland), 20(8), 1–24. https://doi.org/10.3390/s20082424

Al-Makhalas, A., Abualait, T., Ahsan, M., Abdulaziz, S., & Muslem, W. Al. (2023). A gender based comparison and correlation of spatiotemporal gait parameters and postural stability. Acta Biomedica, 94(2). https://doi.org/10.23750/abm.v94i2.13602

Ängeby Möller, K., Svärd, H., Suominen, A., Immonen, J., Holappa, J., & Stenfors, C. (2018). Gait analysis and weight bearing in pre-clinical joint pain research. Journal of Neuroscience Methods, 300, 92–102. https://doi.org/10.1016/j.jneumeth.2017.04.011

Basheer M. ameen, R. (2024). Quantifying the Impact of Running Cadence on Biomechanics, Performance, and Injury Risk: a Physics-Based Analysis. Science Journal of University of Zakho, 12(2), 237–243. https://doi.org/10.25271/sjuoz.2024.12.2.1233

Błaszczyk, J. W., Plewa, M., Cieślińska-Świder, J., Bacik, B., Zahorska-Markiewicz, B., & Markiewicz, A. (2011). Impact of excess body weight on walking at the preferred speed. Acta Neurobiologiae Experimentalis, 71(4), 528–540. https://doi.org/10.55782/ane-2011-1869

Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: Reference values and determinants. Age and Ageing, 26(1), 15–19. https://doi.org/10.1093/ageing/26.1.15

Boonstra, A. M., Fidler, V., & Eisma, W. H. (1993). Walking speed of normal subjects and amputees: Aspects of validity of gait analysis. Prosthetics and Orthotics International, 17(2), 78–82. https://doi.org/10.3109/03093649309164360

Castellini, J. L. A., Grande Ratti, M. F., & Chan, D. M. (2023). Age, Gender, Body Mass Index, and Foot Loading During Gait. Foot and Ankle Orthopaedics, 8(3). https://doi.org/10.1177/24730114231198524

Chumanov, E. S., Wall-Scheffler, C., & Heiderscheit, B. C. (2008). Gender differences in walking and running on level and inclined surfaces. Clinical Biomechanics, 23(10), 1260–1268. https://doi.org/10.1016/j.clinbiomech.2008.07.011

Donelan, J. M., & Kram, R. (2000). Exploring dynamic similarity in human running using simulated reduced gravity. Journal of Experimental Biology, 203(16), 2405–2415. https://doi.org/10.1242/jeb.203.16.2405

Espinoza-Araneda, J., Bravo-Carrasco, V., Álvarez, C., Marzuca-Nassr, G. N., Muñoz-Mendoza, C. L., Muñoz, J., & Caparrós-Manosalva, C. (2022). Postural Balance and Gait Parameters of Independent Older Adults: A Sex Difference Analysis. International Journal of Environmental Research and Public Health, 19(7). https://doi.org/10.3390/ijerph19074064

Fan, Y., Zhang, B., Huang, G., Zhang, G., Ding, Z., Li, Z., Sinclair, J., & Fan, Y. (2022). Sarcopenia: Body Composition and Gait Analysis. Frontiers in Aging Neuroscience, 14(July), 1–13. https://doi.org/10.3389/fnagi.2022.909551

Hell, A. K., Braunschweig, L., Grages, B., Brunner, R., & Romkes, J. (2021). The influence of backpack weight in school children: gait, muscle activity, posture and stability. Orthopade, 50(6), 446–454. https://doi.org/10.1007/s00132-020-04047-8

Herssens, N., van Criekinge, T., Saeys, W., Truijen, S., Vereeck, L., van Rompaey, V., & Hallemans, A. (2020). An investigation of the spatio-temporal parameters of gait and margins of stability throughout adulthood. Journal of the Royal Society Interface, 17(166). https://doi.org/10.1098/rsif.2020.0194

Kirtley, C. (2006). Clinical Gait Analysis. Theory and Practice-Churchill Livingstone. In Elsevier’s Health Sciences Rights. http://www.questia.com/PM.qst?a=o&docId=26347764

Patricia M. McAndrew Young, and J. B. D. (2013). Voluntarily Changing Step Length or Step Width Affects Dynamic Stability of Human Walking Patricia. PMC, 35(3), 1–7. https://doi.org/10.1016/j.gaitpost.2011.11.010.Voluntarily

Rosso, V., Agostini, V., Takeda, R., Tadano, S., & Gastaldi, L. (2019). Influence of BMI on gait characteristics of young adults: 3D evaluation using inertial sensors. Sensors (Switzerland), 19(19). https://doi.org/10.3390/s19194221

Wolff, C., Steinheimer, P., Warmerdam, E., Dahmen, T., Slusallek, P., Schlinkmann, C., Chen, F., Orth, M., Pohlemann, T., & Ganse, B. (2023). Effects of age, body height, body weight, body mass index and handgrip strength on the trajectory of the plantar pressure stance-phase curve of the gait cycle. Frontiers in Bioengineering and Biotechnology, 11(February), 1–9. https://doi.org/10.3389/fbioe.2023.1110099

Yu, J.-S., Zhuang, C., Guo, W.-X., Chen, J.-J., Wu, X.-K., Xie, W., Zhou, X., Su, H., Chen, Y.-X., Wang, L.-K., Li, W.-K., Tian, K., & Zhuang, R.-J. (2023). Reference values of gait parameters in healthy Chinese university students: A cross-sectional observational study. World Journal of Clinical Cases, 11(29), 7061–7074. https://doi.org/10.12998/wjcc.v11.i29.7061

Downloads

Published

2024-12-01

How to Cite

Ameen , R. B. M., Mohammed , D. W., & Bowen , J. (2024). PHYSICS PERSPECTIVES ON HUMAN LOCOMOTION: INVESTIGATING THE MECHANICS OF WALKING PATTERNS. Science Journal of University of Zakho, 12(4), 513–521. https://doi.org/10.25271/sjuoz.2024.12.4.1352

Issue

Section

Science Journal of University of Zakho