ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES SYNTHESIZED BY HYDROTHERMAL TECHNIQUE

Authors

  • Shireen Taily Abduljabbar Department of Physics, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
  • Tariq Abdul-Hameed Abbas Department of Physics, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2025.13.2.1476

Keywords:

Silver Nanoparticles, Hydrothermal Technique, Polyvinylpyrrolidone Stabilizer, Size Control, Antibacterial Activity

Abstract

In this work, Ag NPs were synthesized via a hydrothermal method using silver nitrate (AgNO3) as precursor material. The impact of PVP concentration on the particle size distribution and surface morphology of Ag NPs in the hydrothermal reaction was studied. The obtained Ag NPs were characterized by UV–Vis, XRD, FESEM, and FTIR measurements. The calculated values of Eg from the absorption peaks of the UV/Vis- spectra were found to be increased from 1.70 eV to 1.87 eV with increasing the concentration of PVP from 0.2 mol/L to 0.5 mol/L. XRD measurements revealed that the Ag NPs are highly crystalline. The FESEM observation results indicated that the optimized synthesized Ag NPs are spherical with an average size of 140 nm. The FTIR results confirmed the Ag NPs formation with presence of several functional groups in Ag NP and pure PVP. The study evaluated the antibacterial activity of Ag NPs based on the diameter of the inhibition zone in the agar well diffusion method. The results indicated that the characteristics and antibacterial activity of Ag NPs could be optimized by altering the concentration of PVP used as a stabilizer. The Ag NPs synthesized without the addition of PVP showed antibacterial activity on both gram-negative bacterium Escherichia coli (11 to 12) mm and gram-positive bacterium Staphylococcus aureus (12 to 13) mm, meanwhile with using PVP, there is no inhibitory activity towards gram-negative bacteria but showed antibacterial activity on gram-positive (25) mm. The stability of Ag NPs has been investigated by measuring the absorption spectrum of the PVP-Ag NPs, which was found to be stable for nearly 3 months. Synthesis of stable Ag NPs is necessary for later use in the required application.

References

REFERENCES

Abbas, R., Luo, J., Qi, X., Naz, A., Khan, I. A., Liu, H., Yu, S., & Wei, J. (2024). Silver nanoparticles: Synthesis, structure, properties and applications. Nanomaterials, 14(17), 1425. https://doi.org/https://doi.org/10.3390/nano14171425

Ahmad, A. A. (2022). Solid State Synthesis of Silver Nanoparticles Using Violuric Acid as a Novel Reducing Agent. Science Journal of University of Zakho, 10(4), 193-196. https://doi.org/https://doi.org/10.25271/sjuoz.2022.10.4.1021

Altammar, K. A. (2023). A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in microbiology, 14, 1155622. https://doi.org/https://doi.org/10.3389/fmicb.2023.1155622

Bamiduro, F., William, N., Hondow, N., Milne, S., Nelson, A., & Drummond-Brydson, R. (2018). Hydrothermal Synthesis of Silver Nanoparticles for High Throughput Biosensing Applications. MRS Advances, 3(15-16), 861-866.

https://doi.org/ https://doi.org/10.1557/adv.2018.197

Bhatia, D., Mittal, A., & Malik, D. K. (2016). Antimicrobial activity of PVP coated silver nanoparticles synthesized by Lysinibacillus varians. 3 Biotech, 6, 1-8. https://doi.org/https://doi.org/10.1007/s13205-016-0514-7

Cheng, Y., Wang, M., Fang, C., Wei, Y., Chen, J., & Zhang, J. (2021). Variability and improvement of optical and antimicrobial performances for CQDs/mesoporous SiO2/Ag NPs composites via in situ synthesis. Green Processing and Synthesis, 10(1), 403-411. https://doi.org/https://doi.org/10.1515/gps-2021-0035

Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in microbiology, 7, 1831. https://doi.org/https://doi.org/10.3389/fmicb.2016.01831

Ding, X., Kan, C., Mo, B., Ke, S., Cong, B., Xu, L., & Zhu, J. (2012). Synthesis of polyhedral Ag nanostructures by a PVP-assisted hydrothermal method. Journal of Nanoparticle Research, 14, 1-9. https://doi.org/https://doi.org/10.1007/s11051-012-1000-8

Duman, H., Eker, F., Akdaşçi, E., Witkowska, A. M., Bechelany, M., & Karav, S. (2024). Silver nanoparticles: A comprehensive review of synthesis methods and chemical and physical properties. Nanomaterials, 14(18), 1527. https://doi.org/ https://doi.org/10.3390/nano14181527

Eker, F., Duman, H., Akdaşçi, E., Bolat, E., Sarıtaş, S., Karav, S., & Witkowska, A. M. (2024). A comprehensive review of nanoparticles: from classification to application and toxicity. Molecules, 29(15), 3482. https://doi.org/ https://doi.org/10.3390/molecules29153482

El Amri, N., & Roger, K. (2020). Polyvinylpyrrolidone (PVP) impurities drastically impact the outcome of nanoparticle syntheses. Journal of Colloid and Interface Science, 576, 435-443. https://doi.org/https://doi.org/10.1016/j.jcis.2020.04.113

Esmael, M. M. (2024). ENHANCED SYNTHESIS OF NiO NANO FILM THROUGH SOL-GEL DIP COATING METHOD: INVESTIGATION THE IMPACT OF LASER IRRADIATION. Science Journal of University of Zakho, 12(4), 436-441. https://doi.org/ https://doi.org/10.25271/sjuoz.2024.12.4.1308

Feng, S.-H., & Li, G.-H. (2017). Hydrothermal and solvothermal syntheses. In Modern inorganic synthetic chemistry (pp. 73-104). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63591-4.00004-5

Ferreira, A. M., Vikulina, A., Loughlin, M., & Volodkin, D. (2023). How similar is the antibacterial activity of silver nanoparticles coated with different capping agents? RSC advances, 13(16), 10542-10555. https://doi.org/DOI: 10.1039/D3RA00917C

Gao, M., Sun, L., Wang, Z., & Zhao, Y. (2013). Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Materials Science and Engineering: C, 33(1), 397-404. https://doi.org/https://doi.org/10.1016/j.msec.2012.09.005

Ghadiri, M., Hallajzadeh, J., Akhghari, Z., Nikkhah, E., & Othman, H. (2023). Green synthesis and antibacterial effects of silver nanoparticles on novel activated carbon. Iran J. Chem. Chem. Eng.

Gharibshahi, L., Saion, E., Gharibshahi, E., Shaari, A. H., & Matori, K. A. (2017). Influence of Poly (vinylpyrrolidone) concentration on properties of silver nanoparticles manufactured by modified thermal treatment method. PLoS One, 12(10), e0186094. https://doi.org/https://doi.org/10.1371/journal.pone.0186094

Ivlieva, A., Petritskaya, E., Rogatkin, D., Yushin, N., Grozdov, D., Vergel, K., & Zinicovscaia, I. (2022). Does nanosilver have a pronounced toxic effect on humans? Applied Sciences, 12(7), 3476. https://doi.org/ https://doi.org/10.3390/app12073476

Jalal, V. J. (2024). Structural and optical properties of polymer blend nanocomposites based on PVP/PVA incorporated AgNO3. Journal of Physics Communications, 8(5), 055004. https://doi.org/DOI 10.1088/2399-6528/ad4e97

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931. https://doi.org/https://doi.org/10.1016/j.arabjc.2017.05.011

Khizir, H. A., & Abbas, T. A.-H. (2021). Hydrothermal growth and controllable synthesis of flower-shaped TiO 2 nanorods on FTO coated glass. Journal of Sol-Gel Science and Technology, 98, 487-496. https://doi.org/https://doi.org/10.1007/s10971-021-05531-z

Koczkur, K. M., Mourdikoudis, S., Polavarapu, L., & Skrabalak, S. E. (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton transactions, 44(41), 17883-17905. https://doi.org/ https://doi.org/10.1039/C5DT02964C

Li, J., Wu, Q., & Wu, J. (2016). Synthesis of nanoparticles via solvothermal and hydrothermal methods. 12. In: Springer international publishing Switzerland.

Liu, H., Wang, S., Li, Z., Zhuo, R., Zhao, J., Duan, Y., Liu, L., & Yang, J. (2024). Experimental study on the preparation of monodisperse nano-silver by hydrothermal synthesis. Materials Chemistry and Physics, 314, 128902. https://doi.org/https://doi.org/10.1016/j.matchemphys.2024.128902

Mirzaei, A., Janghorban, K., Hashemi, B., Bonyani, M., Leonardi, S. G., & Neri, G. (2017). Characterization and optical studies of PVP-capped silver nanoparticles. Journal of Nanostructure in Chemistry, 7, 37-46. https://doi.org/https://doi.org/10.1007/s40097-016-0212-3

Mohammed, J. H., & Salih, N. A. M. (2022). Synthesis and characterization of some new nitrones derivatives and screening their biological activities. Science Journal of University of Zakho, 10(4), 268-273. https://doi.org/ https://doi.org/10.25271/sjuoz.2022.10.4.1096

More, P. R., Pandit, S., Filippis, A. D., Franci, G., Mijakovic, I., & Galdiero, M. (2023). Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms, 11(2), 369. https://doi.org/https://doi.org/10.3390/microorganisms11020369

Neto, F. N. S., Morais, L. A., Gorup, L. F., Ribeiro, L. S., Martins, T. J., Hosida, T. Y., Francatto, P., Barbosa, D. B., Camargo, E. R., & Delbem, A. C. (2023). Facile synthesis of PVP-Coated silver nanoparticles and evaluation of their physicochemical, antimicrobial and toxic activity. Colloids and Interfaces, 7(4), 66. https://doi.org/https://doi.org/10.3390/colloids7040066

Obaidellah, J., & Ahmed, S. A. (2023). CHARACTERIZATION OF SYNTHESIZED SILVER NANOPARTICLES USING LEPIDIUM SATIVUM PLANT. Science Journal of University of Zakho, 11(4), 548–556-548–556. https://doi.org/https://doi.org/10.25271/sjuoz.2023.11.4.1174

Oliveira, A. E. F., Pereira, A. C., de Resende, M. A. C., & Ferreira, L. F. (2022). Synthesis of a silver nanoparticle ink for fabrication of reference electrodes. Talanta Open, 5, 100085. https://doi.org/https://doi.org/10.1016/j.talo.2022.100085

Perumal, R., Casale, S., De Stefano, L., & Spadavecchia, J. (2017). Synthesis and characterization of Ag-Protoporphyrin nano structures using mixed co-polymer method. Frontiers in Laboratory Medicine, 1(2), 49-54. https://doi.org/https://doi.org/10.1016/j.flm.2017.05.002

Slewa, L. H., Abbas, T. A., & Ahmed, N. M. (2019). Hydrothermal and solvothermal synthesis of nanorods and 3D (micro/nano) V 2 O 5 on macro PSi substrate for pH-EGFET sensors. Journal of Materials Science: Materials in Electronics, 30, 11193-11207. https://doi.org/

https://doi.org/10.1007/s10854-019-01465-z

Slewa, L. H., Gozeh, B. A., Ismael, D. S., FaqeAbdulla, N. Q., & Othman, H. O. (2024). Antibacterial and Antifungal Activity of Ag-NPs Colloids Prepared by a Hydrothermal Reaction in Green Synthesized CQD. BioNanoScience, 1-17. https://doi.org/https://doi.org/10.1007/s12668-024-01486-x

Tang, S., & Zheng, J. (2018). Antibacterial activity of silver nanoparticles: structural effects. Advanced healthcare materials, 7(13), 1701503. https://doi.org/ https://doi.org/10.1002/adhm.201701503

Tooklang, P., Audtarat, S., Chaisen, K., Thepsiri, J., Chingsungnoen, A., Jittabut, P., & Dasri, T. (2024). Functionalization of silver nanoparticles coating cotton fabrics through hydrothermal synthesis for improved antimicrobial properties. Nano Express, 5(2), 025009. https://doi.org/DOI 10.1088/2632-959X/ad437b

Van Viet, P., Sang, T. T., Bich, N. H. N., & Thi, C. M. (2018). An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 182, 108-114. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2018.04.002

Wang, J., Yu, Y., Zhao, X., Sun, J., Wang, Y., & Zhu, H. (2023). A review on the size-dependent bulking, vibration and, wave propagation of nanostructures. Journal of Physics: Condensed Matter, 35(29), 293001. https://doi.org/DOI 10.1088/1361-648X/acc62b

Yaqoob, A. A., Umar, K., & Ibrahim, M. N. M. (2020). Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience, 10(5), 1369-1378. https://doi.org/https://doi.org/10.1007/s13204-020-01318-w

Yatem, A. A., & Rammoo, M. S. (2023). Nanostructured Silver Thin Film: Using Successive Ionic Layer Adsorption and Reduction Method. Science Journal of University of Zakho, 11(1), 73-77. https://doi.org/ https://doi.org/10.25271/sjuoz.2023.11.1.1017

Zein, R., Alghoraibi, I., Soukkarieh, C., Ismail, M. T., & Alahmad, A. (2022). Influence of polyvinylpyrrolidone concentration on properties and anti-bacterial activity of green synthesized silver nanoparticles. Micromachines, 13(5), 777. https://doi.org/ https://doi.org/10.3390/mi13050777

Downloads

Published

2025-04-07

How to Cite

Taily Abduljabbar, S., & Abbas, T. A.-H. (2025). ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES SYNTHESIZED BY HYDROTHERMAL TECHNIQUE. Science Journal of University of Zakho, 13(2), 150–161. https://doi.org/10.25271/sjuoz.2025.13.2.1476

Issue

Section

Science Journal of University of Zakho