A Hybrid Proposed Imperialist Competitive Algorithm with Conjugate Gradient Approach for Large Scale Global Optimization
Keywords:
Large scale global Optimization, Evolutionary Algorithms, Imperialist Competitive Algorithm (ICA), Conjugate Gradient (CG)Abstract
This paper presents a novel hybrid imperialist competitive algorithm called ICA-CG algorithm. Such an algorithm combines the evolution ideas of the imperialist competitive algorithm and the classic optimization ideas of the conjugate gradient, based on the compensation for solving the large scale optimization. In the ICA-CG algorithm, the process of every iteration is divided into two stages. In the first stage, the randomly, rapidity and wholeness of the imperialist competitive Algorithm are used. In the second stage, one of the common optimization classical techniques, that called conjugate gradient to move imperialist countries, is used. Experimental results for five well known test problems have shown the superiority of the new ICA-CG algorithm, in large scale optimization, compared with the classical GA, ICA, PSO and ABC algorithms, with regard to the convergence of speed and quality of obtained solutions.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Ban A. Mitras, Jalal A. Sultan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.