THE SYNTHESIS, CHARACTERIZATION, DFT-OPTIMIZATION, BIOLOGICAL ASSAYS, AND HEAVY METAL STUDIES OF A NEW TETRA DENTATE DERIVATIVE LIGAND AND ITS COMPLEXES
DOI:
https://doi.org/10.25271/sjuoz.2025.13.3.1542Keywords:
N3O Ligand, Butyric Acid, Schiff Bases, Wastewater Purification, Antimicrobial Studies, DFT-OptimizationeAbstract
A new tetra dentate derivative ligand [(E)-N-((E)-(2-(((Z)-1-hydroxybutylidene) amino) phenyl) (isopropylimino) methyl) butyrohydrazonic acid] [N3O] type has been prepared from the condensation process of equimolar 2-aminobenzohydrazide, isopropyl amine and followed by another addition of butyric acid. Spectroscopic techniques as FT-IR, UV-visible, Mass spectrum, 1H,13C-NMR, T.L.C., Melting point, Conductivity measurements, Magnetic moment, DFT-optimization studies and other methods have been used to characterize the ligand and its new complexes with the general formula [L(M2)Cl3.H2O] (where M= NiII, CoII, CuII, MnII, CdII, and ZnII). Studying biological activity for the ligand and its complexes against two gram-positive and two gram-negative bacteria . The formed compounds were evaluated for antibacterial activity against two gram-positive and two gram-negative bacteria which are Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. The developed ligand and its metal complexes performed well versus both kinds of bacteria Scheme 1
References
Abd El‐Halim, H. G. (2018). Antimicrobial and anticancer activities of Schiff base ligand and its transition metal mixed ligand complexes with heterocyclic base. Applied Organometallic Chemistry, 32(1), e3899. DOI: https://doi.org/10.1002/aoc.3899
Abu-Dief, A. M., & Mohamed, I. M. (2015). A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef University Journal of Basic and Applied Sciences, 4(2), 119-133. DOI:https://doi.org/10.1016/j.bjbas.2015.05.004
Akbari, Z. C.-D. (2024). Biological evaluation, DFT, MEP, HOMO-LUMO analysis and ensemble docking studies of Zn (II) complexes of bidentate and tetradentate Schiff base ligands as antileukemia agents. Journal of Molecular Structure. DOI:https://doi.org/10.1038/s41598-024-54021-z
Akkuş Taş, N. A. (2024). Synthesis, Enzyme Inhibition, and in Silico Studies of Amino Acid Schiff Bases. Iran. J. Chem. Chem. Eng.(IJCCE) Research Article Vol, 43(3). DOI: https://doi.org/10.1117/12.3034192
Ali, A., Pervaiz, M., Saeed, Z., Younas, U., Bashir, R., Ullah, S., . . . Rashid, A. (2022). Synthesis and biological evaluation of 4-dimethylaminobenzaldehyde derivatives of Schiff bases metal complexes: A review. Inorganic Chemistry Communications, 145, 109903. DOI:https://doi.org/10.1016/j.inoche.2022.109903
Alsalihi, E. I.-F. (2018). Synthesis and antibacterial activity of isatin Schiff base derivative with 3-aminoacetophenone and its Ni (II), Co (II) transition metals complexes. ARO-The Scientific Journal of Koya University, 6(1), 38-45. DOI:http://dx.doi.org/10.14500/aro.10245
Aran, M. M. (2025). Electrical conductance study of Schiff base in different solvents and temperatures: DFT calculation. Bulletin of the Chemical Society of Ethiopia, 39(1). DOI:10.4314/bcse.v39i1.15
Bain, G. A. (2008). Diamagnetic corrections and Pascal's constants. Journal of Chemical Education, 85(4), 532. DOI:https://doi.org/10.1021/ed085p532
Baroi, G. N., Gavala, H. N., Westermann, P., & Skiadas, I. (2017). Fermentative production of butyric acid from wheat straw: Economic evaluation. Industrial Crops and Products, 104, 68-80. DOI:https://doi.org/10.1016/j.indcrop.2017.04.008
Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of chemical physics, 98(7), 5648-5652. DOI:https://doi.org/10.1063/1.464913
Chérif, I. B. (2024). A theoretical and electrochemical impedance spectroscopy study of the adsorption and sensing of selected metal ions by 4-morpholino-7-nitrobenzofuran. Heliyon. DOI:10.1016/j.heliyon.2024.e26709
Diab, M. G. (2019). Sonbati, SM Morgan, S. Abbas, Inner metal complexes of tetradentate Schiff base: Synthesis, characterization, biological activity and molecular docking studies. Applied Organometallic Chemistry, 33(7). DOI:https://doi.org/10.1002/aoc.4945
Ghosh, P., Dey, S. K., Ara, M. H., Karim, K., & Islam, A. (2019). A review on synthesis and versatile applications of some selected Schiff bases with their transition metal complexes. Egyptian Journal of Chemistry, 62(Special Issue (Part 2) Innovation in Chemistry), 523-547. DOI: 10.21608/ejchem.2019.13741.1852
Hadi, M. K. (2022). Synthesis, characterization and preliminary antimicrobial evaluation of new schiff bases and aminothiadiazole derivatives of N-substituted phthalimide. Research Journal of Pharmacy and Technology, 15(9). DOI:10.52711/0974-360X.2022.00647
Hamad, A. A., Omer, R. A., Kaka, K. N., Abdulkareem, E. I., & Rashid, R. F. (2024). Biological activities of metal complexes with Schiff base. Reviews in Inorganic Chemistry(0). DOI:https://doi.org/10.1515/revic-2024-0075
Islam, M. R., & Mohsin, M. (2007). Synthesis of isatin, 5-chloroisatin and their∆-2-1, 3, 4 oxadiazoline derivatives for comparative cytotoxicity study on brine shrimp. ||| Bangladesh Journal of Pharmacology, 2(1), 7-12. DOI:https://doi.org/10.3329/bjp.v2i1.494
Kane, C. H., Tinguiano, D., Tamboura, F. B., Thiam, I. E., Barry, A. H., Gaye, M., & Retailleau, P. (2016). Synthesis and characterization of novel M (II)(M= Mn (II), Ni (II), Cu (II) or Zn (II)) complexes with tridentate N2, O-donor ligand (E)-2-amino-N’-[1-(pyridin-2-yl)-ethylidene] benzohydrazide. Bulletin of the Chemical Society of Ethiopia, 30(1), 101-110. DOI:10.4314/bcse.v30i1.9
Kumagai, S. I. (2024). Solid-state NMR of the retinal protonated Schiff base in microbial rhodopsins. Magnetic Resonance Letters, 4(3). DOI:https://doi.org/10.1016/j.mrl.2024.200132
Kumar, V. V., & Anthony, S. P. (2015). Heavy metal cation and anion sensing studies of N-(2-hydroxybenzyl)-isopropylamine surface functionalized AgNPs. New Journal of Chemistry, 39(2), 1308-1314. DOI:DOI https://doi.org/10.1039/C4NJ01740D
Lockyer, N. P.-T. (2024). Secondary ion mass spectrometry. Nature Reviews Methods Primers, 32. DOI:https://doi.org/10.1038/s43586-024-00311-9
Lundgren, R. J. (2016). Key concepts in ligand design: an introduction. Ligand Design in Metal Chemistry: Reactivity and Catalysis, 1-14. DOI:10.1002/9781118839621
Mukhtar, S. S., Hassan, A. S., Morsy, N. M., Hafez, T. S., Hassaneen, H. M., & Saleh, F. M. (2021). Overview on synthesis, reactions, applications, and biological activities of Schiff bases. Egyptian Journal of Chemistry, 64(11), 6541-6554. DOI: 10.21608/ejchem.2021.79736.3920
Nawaz, N., Ahmad, I., Darwesh, N. M., Wahab, A., Rahman, S. U., Khan, F. A., . . . Uddin, K. (2020). Synthesis, characterization and antioxidant activity of nickel (II) Schiff base complexes derived from 4-(dimethylamino) benzaldehyde. Journal of the Chemical Society of Pakistan, 42(2), 238-242. DOI:https://doi.org/10.1016/j.rechem.2024.101517
Parr, R. G. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922-1924. DOI:https://doi.org/10.1021/ja983494x
Ravichandran, R. M. (2014). Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food chemistry, 472-478. DOI:https://doi.org/10.1016/j.foodchem.2013.09.080
Reddy, K. H. (2007). Bioinorganic chemistry. New Age International. DOI:http://13.232.72.61:8080/jspui/handle/123456789/559
Senthilkumar, S. J. (2021). Synthesis, structure analysis, biological activity and molecular docking studies of some hydrazones derived from 4-aminobenzohydrazide. Journal of Molecular Structure, 1226, 129354. DOI:https://doi.org/10.1016/j.molstruc.2020.129354
Singh, G. J. (2021). Synthesis, characterization and UV–visible study of schiff base-acetylene functionalized organosilatrane receptor for the dual detection of Zn2+ and Co2+ ions. Inorganica Chimica Acta, 525. DOI:https://doi.org/10.1016/j.ica.2021.120465
Tanabe, Y. S. (1954). On the absorption spectra of complex ions II. Journal of the Physical Society of Japan, 9(5). DOI:https://doi.org/10.1143/JPSJ.9.766
Wang, H.-C., Yan, X.-Q., Yan, T.-L., Li, H.-X., Wang, Z.-C., & Zhu, H.-L. (2016). Design, synthesis and biological evaluation of benzohydrazide derivatives containing dihydropyrazoles as potential EGFR kinase inhibitors. Molecules, 21(8), 1012. DOI:https://doi.org/10.3390/molecules21081012
Xiao, Z. C.-T. (2018). Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis. Biotechnology for biofuels, 11. DOI:https://doi.org/10.1186/s13068-018-1165-1
Zaman Brohi, R. O. (2020). Graphene oxide functionalized with a Schiff Base for the removal of Pb (II) ions from contaminated water: experimental and modeling approach. Journal of Chemical Technology & Biotechnology, 95(6). DOI:https://doi.org/10.1002/jctb.6362
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kwestan Namiq Aziz , Eman Ibrahim Alsalihi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.