ADOMIAN DECOMPOSITION METHOD AND VARIATIONAL ITERATION METHOD FOR SOLVING SASA-SATSUMA EQUATION

Authors

  • Knier A. Salih Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region,
  • Saad A. Manaa Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2025.13.3.1561

Keywords:

Sasa-Satsuma Equation, Nonlinear Schrödinger Equation, Numerical Solution, Adomian Decomposition Method, Hirota-Satsuma coupled kdv systems, Sumudu Transform method.

Abstract

The Sasa-Satsuma equation is an integrable higher-order nonlinear Schrodinger equation. In this paper, two schemes are proposed to study numerical solutions of the Sasa-Satsuma nonlinear Schrödinger equation with initial conditions using the Adomian decomposition method and the variational iteration method. Both approaches produce quickly convergent series for each scheme with particularly important features. The present results have been displayed graphically and, in a table, to demonstrate the effectiveness and applicability of those techniques. The results obtained by the Adomian decomposition method are compared with the exact solution as well as the results obtained by variational iteration method. A comparison between the two approaches reveals that the Adomian decomposition approach is closer and more efficient than the variational iteration approach

Author Biography

Saad A. Manaa, Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq

Prof. Dr. Saad. A. Manaa, Professor in the Department of Mathematics, University of Zakho.

References

Adams, C. S., & Hughes, I. (2019). Optics f2f: from Fourier to Fresnel. Oxford University Press. https://doi.org/10.1093/oso/9780198786788.003.0007

Akhmediev, N., Soto-Crespo, J. M., Devine, N., & Hoffmann, N. P. (2015). Rogue wave spectra of the Sasa–Satsuma equation. Physica D: Nonlinear Phenomena, 294, 37–42. https://doi.org/10.1016/j.physd.2014.11.006

Akram Abdulqadr, D., & Nawzad Mustafa, A. (2025). Global Stability And Hopf Bifurcation Of A Delayed Predator-Prey Model Incorporating Allee Effect And Fear Effect. 13(1), 83–88. https://doi.org/10.25271/sjuoz.2024.12.3.1406

Azzo, S. M., & Manaa, S. A. (2022). Sumudu-Decomposition Method to Solve Generalized Hirota-Satsuma Coupled Kdv System. Science Journal of University of Zakho, 10(2), 43–47. https://doi.org/10.25271/sjuoz.2022.10.2.879

Chen, Y., & An, H. L. (2008). Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives. Applied Mathematics and Computation, 200(1), 87–95. https://doi.org/10.1016/j.amc.2007.10.050

Dehghan, M., & Salehi, R. (2011). The use of variational iteration method and Adomian decomposition method to solve the Eikonal equation and its application in the reconstruction problem. International Journal for Numerical Methods in Biomedical Engineering, 27(4), 524–540. https://doi.org/10.1002/cnm.1315

Duan, J.-S., Rach, R., Baleanu, D., & Wazwaz, A.-M. (2012). A review of the Adomian decomposition method and its applications to fractional differential equations. Communications in Fractional Calculus, 3(2), 73–99.

Ghorbani, A., & Saberi-Nadjafi, J. (2009). An effective modification of He’s variational iteration method. Nonlinear Analysis: Real World Applications, 10(5), 2828–2833. https://doi.org/10.1016/j.nonrwa.2008.08.008

He, J.-H. (1999). Variational iteration method-a kind of non-linear analytical technique: some examples. In International Journal of Non-Linear Mechanics 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1

Hesameddini, E., & Fotros, F. (2012). Solution for Time-Fractional Coupled Klein-Gordon Schrodinger Equation Using Decomposition Method. In International Mathematical Forum 7(21) 1047-1056.

Kivshar, Y. S., & Agrawal, G. P. (2003). Optical solitons: from fibers to photonic crystals. Academic press. https://doi.org/10.1016/B978-0-12-410590-4.X5000-1

Kumar, A., & Malik, M. (2023). IMPACT OF HUNTING COOPERATION AND FEEDBACK CONTROL FOR A NONLINEAR HYBRID LESLIE–GOWER PREDATOR-PREY SYSTEM ON NONUNIFORM TIME DOMAIN. Rocky Mountain Journal of Mathematics, 53(2), 485–515. https://doi.org/10.1216/rmj.2023.53.485

Li, C., Chen, L., & Li, G. (2020). Optical solitons of space-time fractional Sasa-Satsuma equation by F-expansion method. Optik, 224, 165527. https://doi.org/10.1016/j.ijleo.2020.165527

Manaa, S. A., Easif, F. H., & Yousif, M. A. (2014). Adomian Decomposition Method for Solving the Kuramoto-Sivashinsky Equation. In IOSR Journal of Mathematics 10(1), 08-12. https://doi.org/ 10.9790/5728-10110812

Murad, M. A. S., Hamasalh, F. K., Arnous, A. H., Malik, S., Iqbal, M., & Nofal, T. A. (2024). Optical solitons with conformable fractional evolution for the (3+1)-dimensional Sasa–Satsuma equation. Optical and Quantum Electronics, 56(10), 1733. https://doi.org/10.1007/s11082-024-07617-8

Murad, M. A. S., Hamasalh, F. K., & Ismael, H. F. (2024). Time-fractional Chen-Lee-Liu equation: Various optical solutions arising in optical fiber. Journal of Nonlinear Optical Physics and Materials, 33(6), 2350061. https://doi.org/10.1142/S0218863523500613

Odibat, Z. M., & Momani, S. (2006). Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order. In International Journal of Nonlinear Sciences and Numerical Simulation 7(1), 27-34. https:// doi.org/10.1515/IJNSNS.2006.7.1.27

Ray, S. S., & Bera, R. K. (2005). Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Applied Mathematics and Computation, 168(1), 398–410. https://doi.org/10.1016/j.amc.2004.09.006

Sabali, A. J., Manaa, S. A., & Easif, F. H. (2018). Adomian and Adomian-Padé Technique for Solving Variable Coefficient Variant Boussinesq System. Science Journal of University of Zakho, 6(3), 108–112. https://doi.org/10.25271/sjuoz.2018.6.3.514

Sabali, A. J., Manaa, S. A., & Easif, F. H. (2021). New Successive Approximation Methods for Solving Strongly Nonlinear Jaulent-Miodek Equations. Science Journal of University of Zakho, 9(4), 193–197. https://doi.org/10.25271/sjuoz.2021.9.4.869

Sadigh Behzadi, S. (2011). SOLVING SCHR¨ODINGERSCHR¨ SCHR¨ODINGER EQUATION BY USING MODIFIED VARIATIONAL ITERATION AND HOMOTOPY ANALYSIS METHODS. In Journal of Applied Analysis and Computation 1 (4), 427-437. https://doi.org/10.11948/2011029

Sasa, N., & Satsuma, J. (1991). New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. Journal of the Physical Society of Japan, 60(2), 409–417. https://doi.org/10.1143/JPSJ.60.409

Sweilam, N. H., & Al-Bar, R. F. (2007). Variational iteration method for coupled nonlinear Schrödinger equations. Computers and Mathematics with Applications, 54(7–8), 993–999. https://doi.org/10.1016/j.camwa.2006.12.068

Tatari, M., Dehghan, M., & Razzaghi, M. (2007). Application of the Adomian decomposition method for the Fokker-Planck equation. Mathematical and Computer Modelling, 45(5–6), 639–650. https://doi.org/10.1016/j.mcm.2006.07.010

Tatari, M., Haghighi, M., & Dehghan, M. (2011). Adomian Decomposition and Variational Iteration Methods for Solving a Problem Arising in Modelling of Biological Species Living Together. In Z. Naturforsch 66(1-2), 93-105. http://znaturforsch.com

Wazwaz, A. M., & Kaur, L. (2019). Optical solitons and Peregrine solitons for nonlinear Schrödinger equation by variational iteration method. Optik, 179, 804–809. https://doi.org/10.1016/j.ijleo.2018.11.004

Wu, C., Zhang, G., Shi, C., & Feng, B.-F. (2022). General rogue wave solutions to the Sasa-Satsuma equation. arXiv preprint arXiv:2206.02210. http://arxiv.org/abs/2206.02210

Wu, J. P., & Geng, X. G. (2017). Inverse scattering transform of the coupled sasa-satsuma equation by riemann-hilbert approach. Communications in Theoretical Physics, 67(5), 527–534. https://doi.org/10.1088/0253-6102/67/5/527

Downloads

Published

2025-07-05

How to Cite

Salih, K., & Manaa, S. (2025). ADOMIAN DECOMPOSITION METHOD AND VARIATIONAL ITERATION METHOD FOR SOLVING SASA-SATSUMA EQUATION. Science Journal of University of Zakho, 13(3), 400–407. https://doi.org/10.25271/sjuoz.2025.13.3.1561

Issue

Section

Science Journal of University of Zakho