EVALUATION OF OXIDATIVE STRESS, ANTIOXIDANT DEFENSES, AND BIOCHEMICAL DYSREGULATION IN OBESE VS. NON-OBESE ADULT MALES

Authors

  • Sozdar Ayoub Adil Department of Chemistry, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
  • Lina Yousif Mohammed Department of Biomedical Science, College of Medicine, University of Zakho, Zakho, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2025.13.3.1601

Keywords:

Obesity, Oxidative Stress, Prostate cancer, Oxidative stress, Antioxidants, SOD, PC, Trace Elements, Metabolic Parameters

Abstract

Obesity is a major public health concern linked to metabolic disturbances and increased oxidative stress. The objective of this research is to evaluate the effect of obesity on oxidative–antioxidant balance in adult males. Comparative cross-sectional study was done at Zakho General Hospital, Iraq, from October 2024 to January 2025, involving 90 males aged 18–44 years, distributed into obese body mass index (BMI) ≥30 and non-obese body mass index (BMI) <25 groups. Blood samples were collected and analyzed for biochemical, and oxidative stress parameters using Cobas auto-analyzers and spectrophotometric methods.  Obese individuals exhibited significantly higher body mass index (BMI), waist circumference (WC), diastolic blood pressure (DBP), fasting blood glucose (FBG), fasting insulin (FI), lipid profile, Liver enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT)), Kidney function parameters (urea, creatinine and uric acid), High-sensitivity C-reactive protein (hs-CRP) and homeostatic model assessment of insulin resistance (HOMA-IR) in comparison with controls. Concentrations of Zinc (Zn) and copper (Cu) were elevated, whereas magnesium (Mg) was decreased in the obese group. Antioxidant markers (glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase) were significantly reduced in obese group. Strong negative correlations are observed between oxidative markers and most anthropometric and biochemical parameters. Obesity in adult males is associated with impaired antioxidant defense and alterations in trace elements, emphasizing the oxidative stress burden in obese individuals and the need for early preventive strategies

References

Amerikanou, C., Kleftaki, S.-A., Karavoltsos, S., Tagkouli, D., Sakellari, A., Valsamidou, E., Gioxari, A., Kalogeropoulos, N., & Kaliora, A. C. (2023). Vanadium, cobalt, zinc, and rubidium are associated with markers of inflammation and oxidative stress in a Greek population with obesity. Frontiers in Endocrinology, 14, 1265310. https://doi.org/10.3389/fendo.2023.1265310

Amin, M. N., Siddiqui, S. A., Uddin, M. G., Ibrahim, M. D., Uddin, S. M. N., Adnan, M. T., Rahaman, M. Z., Kar, A., & Islam, M. S. (2020). Increased oxidative stress, altered trace elements, and macro-minerals are associated with female obesity. Biological Trace Element Research, 197, 384–393. https://doi.org/10.1007/s12011-019-02002-z

Awasthi, Y. C., Ramana, K. V, Chaudhary, P., Srivastava, S. K., & Awasthi, S. (2017). Regulatory roles of glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity. Free Radical Biology and Medicine, 111, 235–243. https://doi.org/10.1016/j.freeradbiomed.2016.10.493

Barakat, B., & Almeida, M. E. F. (2021). Biochemical and immunological changes in obesity. Archives of Biochemistry and Biophysics, 708, 108951. https://doi.org/10.1016/j.abb.2021.108951

Čolak, E., & Pap, D. (2021). The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. Journal of Medical Biochemistry, 40(1), 1. https://doi.org/10.5937/jomb0-24652

Franco, C., & Canzoniero, L. M. T. (2024). Zinc homeostasis and redox alterations in obesity. Frontiers in Endocrinology, 14, 1273177. https://doi.org/10.3389/fendo.2023.1273177

Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502. https://doi.org/10.1093/clinchem/18.6.499

Hadwan, M. H., & Abed, H. N. (2016). Data supporting the spectrophotometric method for the estimation of catalase activity. Data in Brief, 6, 194–199. https://doi.org/10.1016/j.dib.2015.12.012

Ibrahiem, A. A., Mosa, A. A., & Mohammed, L. Y. (2024). Estimation of oxidant, antioxidant and metabolic biomarkers in sera of diabetic rats administrated with parsley leaves extract and its isolated apigenin. Clinical Nutrition Open Science, 54, 113–126. https://doi.org/10.1016/j.nutos.2024.02.003

Idan, H. H., & Mohamoud, H. G. (2024). The Total Antioxidant Capacity and its Relationship with Atherosclerosis Risk Factors in a Sample of Iraqi Individuals with Type 2 Diabetes Mellitus. Journal of the Faculty of Medicine Baghdad, 66(3), 357–362. https://doi.org/10.32007/jfacmedbaghdad.6632334

Irato, P., & Santovito, G. (2021). Enzymatic and non-enzymatic molecules with antioxidant function. In Antioxidants (Vol. 10, Issue 4, p. 579). MDPI. https://doi.org/10.3390/antiox10040579

Jakubiak, G. K., Osadnik, K., Lejawa, M., Kasperczyk, S., Osadnik, T., & Pawlas, N. (2021). Oxidative stress in association with metabolic health and obesity in young adults. Oxidative Medicine and Cellular Longevity, 2021(1), 9987352. https://doi.org/10.1155/2021/9987352

Janciauskiene, S. (2020). The beneficial effects of antioxidants in health and diseases. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 7(3), 182. https://doi.org/10.15326/jcopdf.7.3.2019.0152

Ji, L. L., & Yeo, D. (2021). Oxidative stress: an evolving definition. Faculty Reviews, 10, 13. https://doi.org/10.12703/r/10-13

Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology, 98(5), 1323–1367. https://doi.org/10.1007/s00204-024-03696-4

Jomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., Rhodes, C. J., & Valko, M. (2022). Essential metals in health and disease. Chemico-Biological Interactions, 367, 110173. https://doi.org/10.1016/j.cbi.2022.110173

Kirichenko, T. V., Markina, Y. V., Bogatyreva, A. I., Tolstik, T. V., Varaeva, Y. R., & Starodubova, A. V. (2022). The Role of Adipokines in Inflammatory Mechanisms of Obesity. International Journal of Molecular Sciences, 23(23). https://doi.org/10.3390/ijms232314982. https://doi.org/10.3390/ijms232314982

Li, T., Shi, L., Wei, W., Xu, J., & Liu, Q. (2023). The trace that is valuable: serum copper and copper to zinc ratio for survival prediction in younger patients with newly diagnosed acute myeloid leukaemia. BMC Cancer, 23(1), 14. https://doi.org/10.1186/s12885-02210486-7

Liu, C., Shao, M., Lu, L., Zhao, C., Qiu, L., & Liu, Z. (2021). Obesity, insulin resistance and their interaction on liver enzymes. Plos One, 16(4), e0249299. https://doi.org/10.1371/journal.pone.0249299

Lund, M. A. V, Thostrup, A. H., Frithioff-Bøjsøe, C., Lausten-Thomsen, U., Hedley, P. L., Pedersen, O., Christiansen, M., Hansen, T., & Holm, J.-C. (2020). Low-grade inflammation independently associates with cardiometabolic risk in children with overweight/obesity. Nutrition, Metabolism and Cardiovascular Diseases, 30(9), 1544–1553. https://doi.org/10.1016/j.numecd.2020.04.024

Olechnowicz, J., Tinkov, A., Skalny, A., & Suliburska, J. (2018). Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. The Journal of Physiological Sciences, 68(1), 19–31. https://doi.org/10.1016/j.numecd.2020.04.024

Piuri, G., Zocchi, M., Della Porta, M., Ficara, V., Manoni, M., Zuccotti, G. V., Pinotti, L., Maier, J. A., & Cazzola, R. (2021). Magnesium in obesity, metabolic syndrome, and type 2 diabetes. Nutrients, 13(2), 320. https://doi.org/10.3390/nu13020320

Pourhabibi‐Zarandi, F., Rafraf, M., Zayeni, H., Asghari‐Jafarabadi, M., & Ebrahimi, A. (2022). Effects of curcumin supplementation on metabolic parameters, inflammatory factors and obesity values in women with rheumatoid arthritis: A randomized, double‐blind, placebo‐controlled clinical trial. Phytotherapy Research, 36(4), 1797–1806. https://doi.org/10.1002/ptr.7422

Rohm, T. V, Meier, D. T., Olefsky, J. M., & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. Immunity, 55(1), 31–55. https://doi.org/10.1016/j.immuni.2021.12.013

Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. https://doi.org/10.3390/antiox10020277

Sadiq, I. Z. (2023). Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Current Molecular Medicine, 23(1), 13–35. https://doi.org/10.2174/1566524022666211222161637

Sielska, A., Cembrowska-Lech, D., Kowalska-Góralska, M., Czerniawski, R., Krepski, T., & Skuza, L. (2024). Effects of copper nanoparticles on oxidative stress genes and their enzyme activities in common carp (Cyprinus carpio). The European Zoological Journal, 91(1), 354–365. https://doi.org/10.1080/24750263.2024.2332290

Świątkiewicz, I., Wróblewski, M., Nuszkiewicz, J., Sutkowy, P., Wróblewska, J., & Woźniak, A. (2023). The role of oxidative stress enhanced by adiposity in cardiometabolic diseases. International Journal of Molecular Sciences, 24(7), 6382. https://doi.org/10.3390/ijms24076382

Székely, E., Molnár, M., Lihi, N., & Várnagy, K. (2024). Characterization of copper (II) and zinc (II) complexes of peptides mimicking the CuZnSOD enzyme. Molecules, 29(4), 795. https://doi.org/10.3390/molecules29040795

Vilchis-Landeros, M. M., Vázquez-Meza, H., Vázquez-Carrada, M., Uribe-Ramírez, D., & Matuz-Mares, D. (2024). Antioxidant enzymes and their potential use in breast cancer treatment. International Journal of Molecular Sciences, 25(11), 5675. https://doi.org/10.3390/ijms25115675

WHO.(2024).Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Wróblewski, M., Wróblewska, W., & Sobiesiak, M. (2024). The Role of Selected Elements in Oxidative Stress Protection: Key to Healthy Fertility and Reproduction. International Journal of Molecular Sciences, 25(17), 9409. https://doi.org/10.3390/ijms25179409

Xu, M.-R., Wang, A.-P., Wang, Y.-J., Lu, J.-X., Shen, L., & Li, L.-X. (2024). Serum magnesium levels are negatively associated with obesity and abdominal obesity in type 2 diabetes mellitus: a real-world study. Diabetes & Metabolism Journal, 48(6), 1147–1159. https://doi.org/10.4093/dmj.2023.0401

Yousif, H. A., & Hami, M. A. (2025). Effect of waterpipe smoking and its cessation on metabolic biomarkers and a novel biomarker omentin-1. Biomarkers, 0(0), 1–7. https://doi.org/10.1080/1354750X.2025.2479664. https://doi.org/10.1080/1354750X.2025.2479664

Yu, J., Qiu, J., Zhang, Z., Cui, X., Guo, W., Sheng, M., Gao, M., Wang, D., Xu, L., & Ma, X. (2023). Redox biology in adipose tissue physiology and obesity. Advanced Biology, 7(9), 2200234. https://doi.org/10.1002/adbi.202200234

Downloads

Published

2025-07-05

How to Cite

Adil, S., & Mohammed, L. (2025). EVALUATION OF OXIDATIVE STRESS, ANTIOXIDANT DEFENSES, AND BIOCHEMICAL DYSREGULATION IN OBESE VS. NON-OBESE ADULT MALES. Science Journal of University of Zakho, 13(3), 408–415. https://doi.org/10.25271/sjuoz.2025.13.3.1601

Issue

Section

Science Journal of University of Zakho