• Fawzi A. Issa College of Medicine, Dept. of Biomedical Sciences, University of Zakho-Kurdistan Region-Iraq.
  • Mohammed A. Khidhir Faculty of Science, Dept. of Biology, University of Zakho-Kurdistan Region-Iraq.



Milk, Raw-milk, Milk-quality, Hygiene, opportunistic pathogens, Bacteriological analysis


Milk is a high nutritional food and extremely sensitive to bacterial contamination. The current study aimed to assess the presence and density of bacteria in local raw milk. Eighty raw milk samples were collected from four distanced geographical locations at Dohuk Governorate, Kurdistan Region-Iraq. For each geographical site, two private farms were randomly chosen for collecting milk samples. A batch of 10 raw milk samples was obtained from each farm for bacterial availability analysis. All samples were incubated with aeration at 37 °C for 24-48h on specific bacteriological media. Aerobic bacteria were observed in all sheep raw milk samples. The mean counts of total aerobic bacterial in samples from all farms were from 1.0 x 104 to more than 3.0 x 106 cfu/mL. Staphylococcus aureus was found in 37.5% (n=30); 50% (n=10); for B, D, and K groups, no S. aureus was observed in Z group. S. aureus density was from 1 x 103 to 4.0 x 104 cfu/mL (B Group); 2.7 x 104 to 3.0 x 104 cfu/mL (D Group); and 2.7 x 104 to 3.0 x 104 cfu/mL (K group). Escherichia coli was found in 23.75% (n=19); 40% (n=8), 50% (n=10), and 5% (n=1) of the raw milk samples for B, D, and K groups respectively as Z group was free of E. coli. E. coli contaminated samples produced bacterial growth from 6.0 x 103 to 7.6 x 104 cfu/mL (B Group); and 1.0 x 103 to 6.0 x 103 cfu/mL (D group) and only one sample from K group was contaminated with E. coli (7.4 x 104 cfu/mL). Klebsiella spp were observed in 57.5% (n=46) of the raw-milk samples; Z group 40% (n=8), B group 80% (n=16), D group 50% (n=10), and K group 60% (n =12). Bacterial abundance was from 2.6 x 104 to 1.88 x 105 cfu/mL (Z group); 1.3 x 104 to 1.51 x 105 cfu/mL (B group); 6.0 x 103 to 1.8 x 104 cfu/mL (D group); and from 2.4 x 105 to 1.24 x 106 cfu/mL (K group). Shigella raw milk positive samples were observed in 48.75% (n=39); Z group 100% (n=20), B group 45% (n=9), D group 50% (n=10), while K group was free of Shigella spp. Bacterial density was from 1.9 x 104 to 2.37 x 105 cfu/ mL (Z group), from 5.0 x 103 to 4.8 x 104 cfu/ mL (B group), and from 5.0 x 103 to 2.3 x104 (D group). All sheep raw-milk samples of this work were completely free of any species of Salmonella rods. However, 72 out of 80 examined samples of this study exceeded the total aerobic bacterial count according to the European recommended standards. Good hygienic practices, transporting milk in cold and clean containers, and regular medical checkup for sheep are suggested.


Abdullah, S., Gul, S., Farheen, S., Kibrea, T., Saleem, S., Gul, S., and Ahmad, U., (2018). Detection of Escherichia coli and total microbial population in River Siran water of Pakistan using EMB and TPC agar. Afr. J. Microbiol. Res., 12 (38), 908-912.

Abebe, M., Hailelule, A., Abrha, B., Nigus, A., Birhanu, M., Adane, H., Genene, T., Getachew, G., Merga, G., and Haftay, A., (2014). Antibiogram of Escherichia coli strains isolated from food of bovine origin in selected Woredas of Tigray, Ethiopia. Afr. J. Bacteriol. Res., 6: 17–22.

Addo, K., Mensah, G., and Aning, K., (2011). Risk of Escherichia coli O157: H7 transmission linked to the consumption of raw milk in the state of Ghana. Int. Food Res. J., 20 (2): 1001–1005.

Ahmed, A., Shimamoto, T., (2014). Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157:H7 and Shigella spp. from meat and dairy products in Egypt. Int. J. Food Microbiol. 168–169: 57–62.

Ali, A., and Abdelgadir, W., (2011). Incidence of Escherichia coli in raw cow’s milk in Khartoum state. Bri. J. Dai. Sci., 2: 23–26.

Basanisi, M., La Bella, G., Nobili, G., Franconieri, I., and La Salandra, G. (2017). Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol. 62: 141–146.

Batra, S., (2018). Morphology and culture characteristics of Klebsiella pneumonia (K. pneumonia). Paramedics World,

Bayjanov, J., Wels, M., Starrenburg, M., Vlieg, J., Siezen, R., and Molenaar, D., (2009). PanCGH: a genotype-calling algorithm for pangenome CGH data. Bioinfor., 25: 309–314.

Bekker, A., Jooste, P., and Steyn, L., (2016). Lipid breakdown and sensory analysis of milk inoculated with Chryseobacterium joostei or Pseudomonas fluorescens. Int Dairy J, 52101-106.

Bintsis, T., (2017). Foodborne pathogens. AIMS Microbiol. 3: 529–563.

Bogdanovicova, K., Vyletelova-Klimesova, M., Babak, V., Kalhotka, L., Kolackova, I., and Karpiskova, R., (2016). Microbiological Quality of Raw Milk in the Czech Republic, Cze. J. Food Sci., 34, 2016 (3): 189–196.

Boor, K., Brown, D., Murphy, S., Kozlowski, S., and Bandler, D., (1998). Mirobiological and chemical quality of raw milk in New York State. J Dairy Sci., 81: 1743-1748.

Boquien, C., (2018). Human milk, an ideal food for nutrition of preterm newborn. Front. Pediatr, V 6. Article 295.

Borena, B., Gurmessa, F., Gebremedhin, E., Sarba, E., and Marami, L., (2023). Staphylococcus aureus in cow milk and milk products in Ambo and Bako towns, Oromia, Ethiopia: prevalence, associated risk factors, hygienic quality, and antibiogram. Int Microbiol., oi: 10.1007/s10123-022-00317-x.

Cerva, C., Bremm, M., Reis, A., Bezerra, M., Loiko, C., Cruz, A., Cenci B., and Mayer, F., (2014). Food safety in raw milk production: risk factors associated to bacterial DNA contamination. Trop. Anim. Health Prod. 46: 877–882.

Chen, W, Chen, H, Xia, Y, Yang, Y., Zhao, J., Tian, F., Zhang, H., and Zhang, P., (2009). Immobilization of recombinant thermostable β-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. J Dai Sci., 92 (2): 491-498.

Cheng, C., Yam, W., Tsang, L., Yau, M., Siu, G., Wong, S., Chan, J., To, K., Tse, H., Hung, I., Tai, J., Ho, P., and Yuen, K., (2012). Epidemiology of Klebsiella oxytoca-associated diarrhea detected by Simmons citrate agar supplemented with inositol, tryptophan, and bile salts. J Clin. Microbiol, 50 (5): 1571-1579.

Cheng, J., Zhou, M., Nobrega, D., Cao, Z., Yang, J., Zhu, C., Han, B., and Gao, J., (2021). Virulence profiles of Klebsiella pneumoniae isolated from 2 large dairy farms in China. J. Dairy Sci., 104 (8): 9027-9036

Claeys, W., Cardoen, S., Daube, G., De Block, J., Dewettinck, K., and Dierick, K., (2013). Raw or heated cow milk consumption: Review of risks and benefits. Food Con., 31:251-262.

Colco, R., (2005). Gram staining. Current Protocols in Microbiology, Appendix 3 (1): Appendix D3C.

Coorevits, A., De Jonghe, V., and Vandroemme, J., (2008). Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms. Syst Appl Microbiol, 31: 126–140.

Cullen, J., and MacIntyre, H., (2016). On the use of the serial dilution culture method to enumerate viable phytoplankton in natural communities of plankton subjected to ballast water treatment. J App Phycol, 28 (1): 279-298.

Cullor, J., (1997). Risks and prevention of contamination of dairy products. Rev. Sci. Tech. Off. Int. Epiz. 16:472–481.

Currie, A., Galanis, E., Chacon, P., Murray, R., Wilcott, L., Kirkby, P., and Flint, J., (2018). Outbreak of Escherichia coli O157:H7 infections linked to aged raw milk Gouda cheese. Can J Food Pro., 81(2): 325-331.

Deeth, H., Khusniati, T., Datta, N, and Wallace, R., (2002). Spoilage patterns of skim and whole milks. J Dai. Res., 69 (2): 227-241.

Disassa, N., Sibhat, B., Mengistu, S., Muktar, Y., and Belina, D., (2017). Prevalence and antimicrobial susceptibility pattern of E. coli O157: H7 isolated from traditionally marketed raw cow milk in and around Asosa town, western Ethiopia. Vet. Med. Int., Article ID 7581531.

Elbagory, A., Hammad, A., and Shiha, A., (2015). Prevalence of coliforms, antibiotic resistant coliforms and E. coli serotypes in some varieties of raw milk cheese in Egypt. Korean Soc. Food and Nut. Sci. Conf. Pres., 327, 2015.

Elhosseny, M, Gwida, M, Elsherbini, M, Samra, M., and Ashmawy, M., (2018). Evaluation of physicochemical properties and microbiological quality of camel milk from Egypt. J Dai. Vet Anim Res., 7:92-97.

Elkenany, R., Eltaysh, R., Elsayed, M., Abdel-Daim, M., and Shata, R., (2022). Characterization of multi-resistant Shigella species isolated from raw cow milk and milk products. J Vet Med Sci., 84 (7): 890-897.

El-Malt, M., Abdel Hameed, K., and Mohammed, A., (2013). Microbiological evaluation of yoghurt products in Qena city, Egypt. Vet. World, 7: 400–404.

Elmoslemany, A., Keefe, G., Dohoo, I., and Dingwell, R., (2009). Microbiological quality of bulk tank raw milk in Prince Edward Island dairy herds. J Dai. Sci., 92: 4239-4248.

European Union (2004a). Regulation (EC) No. 852/2004 of the European Parliament and of the Council of 29 April 2004 – on the hygiene of foodstuffs. Off J of Eu Comm, L139: 1-54.

European Union (2004b). Regulation (EC) No. 853/2004 of the European Parliament and of the Council of 29 April 2004 – Laying down specific hy rules for food of animal origin. Off J of Eu Comm, L139: 55-205.

Farhan, R., Abdalla, S., Abdelrahaman, H., Fahmy, N., and Salama, E., (2014). Prevalence of Escherichia coli in some selected foods and children stools with special reference to molecular characterization of Enterohemorrhagic strain. Ame. J Ani. & Vet., Sci. 9: 245–251.

Fernandez, E., Alegría, Á., Delgado, S., Martín, M., and Mayo, B., (2011). Comparative phenotypic and molecular genetic profiling of wild Lactococcus lactis subsp. lactis strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes, isolated from starter-free cheeses made of raw milk. Appl Environ Microbiol, 77: 5324–5335.

Gamal, A., Rasha, Y., Elkenany, M., and Abd-Elmoati, W., (2018). Advanced studies on virulence genes of Salmonella and Shigella species isolated from milk and dairy products. Ann. Res. & Rev. Biol. 29 (3): 1-11

Gebremedhin, E., Ararso, A., Borana, B., Kelbesa, K., Tadese, N., Marami, L., and Sarba, E., (2022). Isolation and identification of Staphylococcus aureus from milk and milk products, associated factors for contamination, and their antibiogram in Holeta, Central Ethiopia. Vet Med Inter., Volume 2022, Article ID 6544705.

Ghali-Mohammed, I., Odetokun, I., Raufu, I., Alhaji, N., and Adetunji, V., (2023). Prevalence of Escherichia coli O157 isolated from marketed raw cow milk in Kwara State, Nigeria. Sci. Afr., V 19, e01469

Gitao, G, Wanjohi, M, Gitari, R, Akweya, B, and Okoth, M., (2014). The prevalence of common milk borne pathogens of Camelus mastitis origin and their antibiotic resistance in North Eastern Province, Kenya. Am J Res Commun., 2: 53-71. 27.

Hale, T., and Keusch, G., (1996). Shigella, Chapter 22. In: Medical Microbiology, 4th ed. (Baron, S., ed.), University of Texas Medical Branch, Galveston.

Hilgarth, M., Behr, J., and Vogel, R., (2017). Monitoring of spoilage-associated microbiota on modified atmosphere packaged beef and differentiation of psychrophilic and psychrotrophic strains. J App. Microbiol., 124: 740—753.

Honish, L., Predy, G., Hislop, N., Chui, L., Kowalewska-Grochowska, K., Trottier, L, and Zazulak, I., (2005). An outbreak of E. coli O157:H7 hemorrhagic colitis associated with unpasteurized gouda cheese. Can J Pub Heal., 96 (3): 182-184.

Ibtisam, E., El Zubeir, M., and Mahboba, I., (2007). The hygienic quality of raw milk produced by some dairy farms in Khartoum State, Sudan. Res. J. Microbiol., 2: 988-991.

Jayarao, B., Pillai, R., Sawant, A., Wolfgang, R., and Hegde, N., (2004). Guidelines for monitoring bulk tank milk somatic cell and bacterial counts. J. Dai. Sci., 87: 3561–3573.

Johler, S., Macori, G., Bellio, A., Acutis, P., Gallina, S., and Decastelli, L., (2018). Short communication: Characterization of Staphylococcus aureus isolated along the raw milk cheese production process in artisan dairies in Italy. J. Dai. Sci., 101: 2915–2920.

Jorgensen, H., Mork, T., Hogasen, R., and Rorvik, L., (2005). Enterotoxigenic Staphylococcus aureus in bulk milk in Norway. J. Appl. Microbiol., 99:158–166.

Jorgensen, J., Pfaller, M., Carroll, K., Funke, G., Landry, L., Richter, S., and Warnock, D., (2015). Manual of clinical microbiology, 11th Edition. Vol. 1.

Kateete, D., Kabugo, U., Baluku, H., Nyakarahuka, L., Kyobe, S., and Okee, M., (2013). Prevalence and antimicrobial susceptibility patterns of bacteria from milkmen and cows with clinical mastitis in and around Kampala, Uganda. PLoS One 8:e63413.

Knight-Jones, T., Hang’ombe, B., Songe, M., Yona, Sinkala, Y., and Delia, and Grace, D., (2016). Microbial contamination and hygiene of fresh cow’s milk produced by smallholders in western Zambia. Int. J. Environ. Res. Public Health, 13 (7): 737

Leclercq, A., Wanegue, C., and Baylac, P., (2002). Comparison of fecal coliform agar and violet red bile lactose agar for fecal coliform enumeration in foods. App & Env Microbiol., 68 (4): 1631–1638.

Lee, H., Camargo, H., and Gonçalves, L., (2012). Characterization of Staphylococcus aureus isolates in milk and the milking environment from small-scale dairy farms of São Paulo, Brazil, using pulsed-field gel electrophoresis. J Dai. Sci. 95 (12): 7377–7383.

Lejeune, J., and Rajala-Schultz, P., (2009). Food safety: unpasteurized milk: a continued public health threat. Clin Inf. Dis., 48: 93-100.

Li, T., Lu, H., Wang, X., Gao, Q., Dai, Y., and Shang, J., (2017). Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front. Cell. Infect. Microbiol. 7:127.

Lilbaek, H., Fatum, T., Ipsen, R, and Sorensen, N., (2007). Modification of milk and whey surface properties by enzymatic hydrolysis of milk phospholipids. J. Agr. Food Chem., 55 (8): 2970-2978.

Litwin, C., Storm, A., Chipowsky, S., and Ryan, K., (1991). Molecular epidemiology of Shigella infections: plasmid profiles, serotype correlation, and restriction endonuclease analysis. J. Clin. Microbiol. 29: 104–108.

Lubote, R., Shahada, F., and Matemu, A., (2014). Prevalence of Salmonella spp. and Escherichia coli in raw milk value chain in Arusha, Tanzania. Ame. J. Res. Comm., 2: 1–13.

Lye, Y., Afsah-Hejri, L., Chang, S., Loo, Y., Puspanadan, S., Kuan, C., and Son, R., (2013). Risk of Escherichia coli O157: H7 transmission linked to the consumption of raw milk. Int. Food Res. J., 20 (2), 1001.

Machado, S., Bagliniere, F., Marchand, S., Coillie, E., Vanetti, M., Block, J., and Heyndrickx, M., (2017). The biodiversity of the microbiota producing heat-resistance enzymes responsible for spoilage in processed bovine milk and dairy products. Fro. Microbiol., 8, Article 302.

Maddocks, S., Olma, T., and Chen, S., (2002). Comparison of CHROM agar Salmonella medium and xylose-lysine-desoxycholate and Salmonella-Shigella agars for isolation of Salmonella strains from stool samples. J Clin Microbiol., 40 (8): 2999-3003.

Magan, J., O′Callaghan, T., Kelly, A., and McCarthy, N., (2021). Compositional and functional properties of milk and dairy products derived from cows fed pasture or concentrate-based diets. Compr. Rev. Food Sci. Food Saf., 20 (3): 2769-2800.

Makita, K., Desissa, F., Teklu, K., Zewde, G., and Grace, D., (2012). Risk assessment of staphylococcal poisoning due to consumption of informally-marketed milk and home-made yoghurt in Debre Zeit, Ethiopia. Int. J Food Microbiol., 153 (1-2): 135-141.

Marchand, S., Heylen, K., Messens, W., Coudijzer, K., De Vos, P., and Dewettinck, K., (2009). Seasonal influence on heat-resistant proteolytic capacity of Pseudomonas lundensis and Pseudomonas fragi, predominant milk spoilers isolated from Belgian raw milk samples. Environ. Microbiol. 11, 467–482.

McCollum, J., Williams, N., Beam, S., Cosgrove, S., Ettestad, P., Ghosh, T., and Cronquist, A., (2012). Multistate outbreak of Escherichia coli O157:H7 infections associated with in-store sampling of an aged raw-milk gouda cheese, 2010. J Food Prot., 75 (10): 1759-1765.

Medina, M., Uknalis, J., and Tu, S., (2011). Effects of sugar addition in Luria Bertani (LB) media on Escherichia coli O157:H7. J. Food Saf.

Merz, A., Stephan, R., and Johler, S., (2016). Staphylococcus aureus isolates from goat and sheep milk seem to be closely related and differ from isolates detected from bovine milk. Front Microbiol., 7:319.

Miller, B., and Lu, C., (2019). Current status of global dairy goat production: An overview. Asian-Austral. J Anim Sci., 32, 1219-1232.

Muehlherr, J., Zweifel, C., Corti, S., Blanco, J., and Stephan, R., (2003). Microbiological quality of raw goat’s and ewe’s bulk-tank milk in Switzerland. J. Dai. Sci. 86 3849–3856.

Munoz, M., Bennett, G., Ahlström, C., Griffiths, H., Schukken, Y., and Zadoks R., (2008): Cleanliness scores as indicator of Klebsiella exposure in dairy cows. J. Dai. Sci., 91: 3908-3916.

Munoz, M., Welcome, F., Schukken, Y., and Zadoks, R., (2007). Molecular epidemiology of two Klebsiella pneumoniae mastitis outbreaks on a dairy farm in New York State. J. Clin. Microbiol., 45: 3964-3971.

Myer, P., Parker, K., Kanach, A., Zhu, T., Morgan, M., and Applegate, B., (2016). The effect of a novel low temperature-short time (LTST) process to extend the shelf-life of fluid milk. SpringerPlus, 5:660.

Neogen, Crop (2011). Mannitol salt agar (7143). Archived from the original (PDF) on 2016-03-03.

Nisa, I., Qasim, M., Driessen, A., Nijland, J., Rafiullah M., Ali, A., Mirza, M., Khan, M., Khan, T., Jalal, A., and Rahman H., (2021). Prevalence and associated risk factors of Shigella flexneri isolated from drinking water and retail raw foods in Peshawar, Pakistan. J. Food Sci., 86 (6): 2579-2589.

Nye, K., Fallon, D., Frodsham, D., Gee, B., Graham, C., Howe, S., Messer, S., Turner, T., and Warren, R., (2002). An evaluation of the performance of XLD, DCA, MLCB, and ABC agars as direct plating media for the isolation of Salmonella enterica from faeces. J. Clin. Pathol. 55 (4): 286–8

Oueslati, S., Ennouri, H., Bamri, H., Ben Othmen, M., and Oueslati, R., (2011). Differential distribution of pathogens from raw milk and place of Shigella by mode of milking. Afr. J. Food Sci. Tec., 2 (8): 179-183.

Quigley, L., O’Sullivan, O., Stanton, C., Beresford, T., Ross, R., Fitzgerald, G., and Cotter, P., (2013). The complex microbiota of raw milk. FEMS Microbiol. Rev. 37:664–698.

Rathod, N., Kahar, S., Ranveer, R., and Annapure, U., (2021). Cold plasma an emerging nonthermal technology for milk and milk products: A review, Int. J. Dai. Tech., 74 (4): 615-626.

Reta, M., Bereda, T., and Alemu, A., (2016). Bacterial contaminations of raw cow’s milk consumed at Jigjiga City of Somali Regional State, Eastern Ethiopia. Int. J. of Food Con., 3:4: DOI 10.1186/s40550-016-0027-5.

Saad, N., Amin, A., Amin, W., and Mostafa, S., (2018). Detection of Acinetobacter species in milk and dairy products. Ass. Vet. Med. J., 64 (156): 34-40.

Sadiq, F., Li, Y., Liu, T., Flint, S., Zhang, G., Yuan, L., Pei, Z., and He, G., (2016). The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int. J Food Microbiol., 238:193-201.

Sambrook, J., Fritsch, F., and Maniatis, T. (2001). Molecular cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Press. New York.

Sharp, S., and Searcy, C., (2006). Comparison of mannitol salt agar and blood agar plates for identification and susceptibility testing of Staphylococcus aureus in specimens from cystic fibrosis patients. J. Clin. Microbiol., 44 (12): 4545-4546.

Shunda, D., Habtamu, T., and Endale, B., (2013). Assessment of bacteriological quality of raw cow milk at different critical points in Mekelle, Ethiopia. Int. J. Live. Res., 3: 42–48.

Siddiquie, M., and Mishra, R., (2014). Age and gender wise distribution pattern of typhoid causing bacteria Salmonella serovars in Mahakaushal region. Wor. J. Pharma. Res., 8 (4): 1183-1203.

Singh, J., and Vyas, A., (2022). Advances in Dairy Microbial Products. Woodhead Publishing, Elsevier Inc. UK

Soler, A., and Ponsell, C., (1995). The microbiological quality of milk produced in the Balearic Islands. Int. Dai. J., 5: 69-74.

Sorhaug, T., and Stepaniak, L., (1997). Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Tre. Food Sci Technol., 8 (2): 35–41.

Stepaniak, L., (2002). Psychrotrophic bacteria, bacteria other than Pseudomonas spp. Encyclopedia of Dairy Sciences, Vol. 4, Roginski, H., Fuquay, W.J., Fox, F.P., 2345- 2351..

Stoeckel, M, Lidolt, M, and Achberger, V., (2016). Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. Int Dai. J (59): 20-28.

Tasse, I., Mengistu, D., Belina, D., and Girma, S., (2022). Detection and determination of Staphylococcus aureus in camel milk and associated factors in fedis, Eastern Hararghe, Ethiopia. Microbiol. Insights, 15: 1–7.

Thabet, M., and Abd-Elhamid, Z., (2020). Occurrence of Shigella species in raw milk and Kareish cheese with special reference to its virulence genes. Ass. Vet. Med. J., 66 (165): 44-54.

Thirunavukkarasu, S., and Rathish, K., (2014). Evaluation of direct tube coagulase test in diagnosing Staphylococcal bacteremia. J. Clin. Diag. Res., 8 (5): DC19-DC21.

Turner, N., Zaharoff, S., King, H., Evans, S., Hamasaki, T., Lodise, T., Ghazaryan, V., Beresnev, T., Riccobene, T., Patel, R., Doernberg, S., Rappo, U., Fowler, V., and Holland, T., (2022). Dalbavancin as an option for treatment of S. aureus bacteremia (DOTS): study protocol for a phase 2b, multicenter, randomized, open-label clinical trial Trials, V 23, Article number: 407.

Vacheyrou, M.. Normand, A., Guyot, P., Cassagne, C., Piarroux, R., and Bouton, Y., (2011). Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int J Food Microbiol146: 253–262.

Vahedi, M., Nasrolahel, M., Sharif, M., and Mirabi, A., (2013). Bacteriological study of raw and unexpired pasteurized cow's milk collected at the dairy farms and super markets in Sari city in 2011. J. Pre. Med. & Hyg., 54 (2): 120-123.

Van Tassell, J., Martin, N., Murphy, S., Wiedmann, M., Boor, K., and Ivy, R., (2011). Evaluation of various selective media for the detection of Pseudomonas species in pasteurized milk. J. Dai. Sci. 95: 1568–1574.

Van Winckel, M., Velde, S., De Bruyne, R., and Van Biervliet, S., (2011). Clinical practice. European. J Pedia., 170 (12): 1489–1494.

Vithanage, N., Dissanayake, M., and Bolge, G., (2016). Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int. Dai. J., 57: 80-90.

Yuan, L., Sadiq, F., Burmolle, M., Wang, N., and He, G., (2019): Insights into psychrotrophic bacteria in raw milk: A review. J Food Prot, 82 (7): 1148–1159.

Yuan, L., Sadiq, F., Liu, T., Li, Y., Gu, J., Yang, H., and He, G., (2018). Spoilage potential of psychrotrophic bacteria isolated from raw milk and the thermo-stability of their enzymes. J. Zhejiang Uni. Sci. 19 (8): 630-642.

Zadoks, R., Griffiths, H., Munoz, M., Ahlstrom, C., Bennett, G., Thomas, E., and Schukken, Y., (2011). Sources of Klebsiella and Raoultella species on dairy farms: Be careful where you walk. J. Dai. Sci., 94 (2): 1045-1051.




How to Cite




Science Journal of University of Zakho