• Fatma Shawkat Taher Department of Biology, College of Science, University of Duhok
  • Hemin E. Othman



S. aureus, MRSA, mecA, SCCmec, Virulence factors


Methicillin-resistant Staphylococcus aureus (MRSA) is a serious human pathogen that can spread in healthcare facilities and among the general public. This study was aimed to evaluate the prevalence and diversity of SCCmec types of this superbug among hospitalized patients. This study involved phenotypic identification and molecular confirmation of S. aureus based on the nuc gene, molecular detection of MRSA, SCCmec typing, and virulence factor profiling of MRSA clinical isolates obtained from hospitalized patients in Duhok province. Out of the 310 enrolled patients, 33 isolates (10.64%) were identified and confirmed as Staphylococcus aureus, of which 51.5% were identified as MRSA based on phenotypic and molecular targeting of the mecA gene. There were no discernible variations between the prevalence rates of this pathogen in different clinical sources, sexes, or age groups (p-values: 0.71, 0.39, and 0.15 respectively). The isolates had elevated rates of resistance to most antibiotic classes. They were classified as extensive drug-resistant (30.3%), multidrug-resistant (57.5%), and non-multidrug-resistant (12.1%). Additionally, SCCmec typing of MRSA by multiplex PCR identified three different SCCmec types and subtypes, including SCCmec type II (35.5%), followed by 17.64% of SCCmec type IV subtype d (IVd), and SCCmec type III (11.76%). However, 35.3% of the MRSA isolates were found to be non-typeable. Molecular profiling of major virulence factors and toxin genes revealed that 57.5% of the isolates were positive for the exfolitative toxin (ETA), 45.4% of the isolates carried TSST-1 (Toxic Shock Syndrome Toxin-1), the PVL (Panton-Valentine Leukocidin) cytotoxin was identified in 15% of the isolates, and 18.1% of the identified S. aureus isolates were positive for the ACME (arginine catabolic mobile element). The findings of the current investigation pointed out the circulating of highly virulent and extensively resistant MRSA strains among hospitalized patients, which may require active surveillance and better control policies


Abduljabar S.S. and Naqid I.A. (2023). Factors Associated with The Nasal Carriage Rate of Methicillin-Resistant Staphylococcus aureus (MRSA) and the Molecular Detection of the mecA Gene Among Athletes. Egypt. Acad. J. Biolog. Sci., 15(2):749-760. DOI: 10.21608/EAJBSC.2023.328290.

Abdulqader H.H. and Saadi A.T. (2019). The Distribution of Pathogens, Risk Factors and Their Antimicrobial Susceptibility Patterns Among Post-Surgical Site Infection in Rizgari Teaching Hospital in Erbil/Kurdistan Region/Iraq. Journal of University of Duhok, Vol. 22, No.1 (Pure and Eng. Sciences), Pp 1-10.

Alagely, H. S. (2019). Characterization of Five Types of Staphylococcal Cassette Chromosomal mec Genes in Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Iraqi Patients. Iraqi journal of biotechnology, 18(2).

AL-Salihi S.S., Karim G.F., Al-Bayati A.M.S., Obaid H.M. (2023). Prevalence of Methicillin-Resistant and Methicillin Sensitive Staphylococcus aureus Nasal Carriage and their Antibiotic Resistant Patterns in Kirkuk City, Iraq. J Pure Appl Microbiol.;17(1):329-337. doi: 10.22207/JPAM.17.1.22.

Anand KB, Agrawal P, Kumar S, Kapila K. (2009). Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian J Med Microbiol; 27:27‑9.

Asghar, A.H. (2014). Molecular characterization of methicillin-resistant Staphylococcus aureus isolated from tertiary care hospitals. Pak J Med Sci.;30(4):698-702. doi: 10.12669/pjms.304.4946.

Chambers, H.F.and Deleo, F.R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7(9):629–41

CLSI, Clinical and Laboratory Standards Institute. (2021). Performance Standards for Antimicrobial Susceptibility Testing.End. 31st.CLSI supplement M100.Clinical and Laboratory Standards Institute, Wayne, USA.

Darboe S, Dobreniecki S, Jarju S, Jallow M, Mohammed NI, Wathuo M, Ceesay B, Tweed S, Basu Roy R, Okomo U, Kwambana-Adams B, Antonio M, Bradbury RS, de Silva TI, Forrest K, Roca A, Lawal BJ, Nwakanma D and Secka O. (2019). Prevalence of Panton-Valentine Leukocidin (PVL) and Antimicrobial Resistance in Community-Acquired Clinical Staphylococcus aureus in an Urban Gambian Hospital: A 11-Year Period Retrospective Pilot Study. Front. Cell. Infect. Microbiol. 9:170. doi: 10.3389/fcimb.2019.00170.

Foster, T.J. (2004). The Staphylococcus aureus "superbug". J Clin Invest. 2004 Dec;114(12):1693-6. doi: 10.1172/JCI23825.

Hadyeh, E., Azmi, K., Seir, R.A., Abdellatief, I.and Abdeen, Z. (2019). Molecular Characterization of Methicillin Resistant Staphylococcus aureus in West Bank-Palestine. Frontiers in public health.; 7:130. DOI: 10.3389/fpubh.2019.00130.

Hami I. A. and Ibrahim Kh. S. (2023). Incidence of Methicillin-Resistant Staphylococcus Aureus (Mrsa) Recovered from Patients with Urinary Tract Infections in Zakho City/Kurdistan-Iraq. Science Journal of the University of Zakho, 11(1), 91 – 97, January-March.

Havaei SA, Assadbeigi B, Esfahani BN, Hoseini NS, Rezaei N, Havaei SR. Detection of mecA and enterotoxin genes in Staphylococcus aureus isolates associated with bovine mastitis and characterization of Staphylococcal cassette chromosome mec (SCCmec) in MRSA strains. Iran J Microbiol. 2015 Jun;7(3):161-7. PMID: 26668704; PMCID: PMC4676986.

Heudorf, U., Krackhardt, B., Karathana, M., Kleinkauf, N.and Zinn, C. (2016). Multidrug-resistant bacteria in unaccompanied refugee minors arriving in Frankfurt am Main, Germany, October to November 2015. Euro surveillance: bulletin Europeen sur les maladies transmissible = European communicable disease bulletin. 2016;21(2): pii:30109. pmid:26838714

Hnaihen KA, Fareed WAA, Al-Mussa ZHT. (2023). Knowledge of healthcare workers to prevent methicillin-resistant Staphylococcus aureus infection in hospitals of Thi-Qar Governorate, Iraq. J Public Health Afr. 1;14(10):2787. doi: 10.4081/jphia.2023.2787.

Hussein N R. (2016). Prevalent Genotypes of Staphylococcus aureus Strains Isolated From Healthcare Workers in Duhok City, Kurdistan Region, Iraq. Int J Infect.;3(2): e35375.

Hussein N. R., Assafi M. S., Ijaz T. (2017). Methicillin-resistant Staphylococcus aureus nasal colonisation amongst healthcare workers in Kurdistan Region, Iraq. Journal of Global Antimicrobial Resistance, Volume 9, 2017, Pages 78-81, ISSN 2213-7165,

Ippolito, G., Leone, S., Lauria, F.N., Nicastri, E.and Wenzel, R.P. (2010). Methicillin-resistant Staphylococcus aureus: the superbug. Int J Infect diseases: IJID: official publication Int Soc Infect Dis. 2010;14(Suppl 4):7–11.

Larsen, J., Raisen, C.L., Ba X, Sadgrove, N.J., Padilla-Gonzalez, G.F., Simmonds, M.S.J., Loncaric, I., Kerschner, H., Apfalter, P., Hartl, al.(2022). Emergence of methicillin resistance predates the clinical use of antibiotics. Nature. 2022;602(7895):135–41

Lo DKH, Muhlebach MS, Smyth AR. Interventions for the eradication of meticillin-resistant Staphylococcus aureus (MRSA) in people with cystic fibrosis. Cochrane Database of Systematic Reviews 2022, Issue 12. Art. No.: CD009650. DOI: 10.1002/14651858.CD009650.pub5.

Magiorakos A P, Srinivasan A, Carey R B, Carmeli Y, Falagas M E, Giske C G, Harbarth S, Hindler J F, Kahlmeter G, Olsson-Liljequist B, Paterson D L, Rice L B, Stelling J, Struelens M J, Vatopoulos A, Weber J T and Monnet D L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect., 18(3):268-81. doi: 10.1111/j.1469- 0691.2011.03570.x.

Makgotlho PE, Kock MM, Hoosen A, Lekalakala R, Omar S, Dove M, Ehlers MM. (2009). Molecular identification and genotyping of MRSA isolates. FEMS Immunol Med Microbiol.; 57(2):104-15. doi: 10.1111/j.1574-695X.2009.00585. x.

Malachowa, N. and DeLeo, F. R. (2010). Mobile genetic elements of Staphylococcus aureus. Cellular and molecular life sciences: CMLS. 2010;67(18):3057–71. pmid:20668911; PubMed Central PMCID: PMC2929429.

Maree, M., Thi- Nguyen, L.T., Ohniwa, R.L., Higashide, M., Msadek ,T.and Morikawa, K.(2022). Natural transformation allows transfer of SCCmec-mediated methicillin resistance in Staphylococcus aureus biofilms. Nat Commun. 2022;13(1):2477.

Mariutti, R. B., Tartaglia, N. R., Seyffert, N., Castro, T. L. de P., Arni, R. K., Azevedo, V. A., … Nishifuji, K. (2017). Exfoliative Toxins of Staphylococcus aureus. InTech. doi: 10.5772/66528.

O'Connor AM, McManus BA, Kinnevey PM, Brennan GI, Fleming TE, Cashin PJ, O'Sullivan M, Polyzois I, Coleman DC. (2018). Significant Enrichment and Diversity of the Staphylococcal Arginine Catabolic Mobile Element ACME in Staphylococcus epidermidis Isolates From Subgingival Peri-implantitis Sites and Periodontal Pockets. Front Microbiol. 12; 9:1558. doi: 10.3389/fmicb.2018.01558.

Othman H. E., Merza N. S. and Jubrael J.MS. (2014). Nucleotide Sequence Analysis of Methicillin Resistance Staphylococcus Aureus in Kurdistan Region-Iraq. Journal of University of Zakho, Vol. 2(A), No.1, Pp 65-73.

Pillai MM, Latha R, Sarkar G. (2012). Detection of methicillin resistance in Staphylococcus aureus by polymerase chain reaction and conventional methods: a comparative study. J Lab Physicians.; 4(2):83-8. doi: 10.4103/0974-2727.105587. PMID: 23441000; PMCID: PMC3574503.

Rasheed NA, Hussein NR. (2020). Characterization of different virulent factors in methicillin-resistant Staphylococcus aureus isolates recovered from Iraqis and Syrian refugees in Duhok city, Iraq. PLoS ONE 15(8): e0237714.

Seidl, K., Leemann, M., Marques, M. P., Rachmühl, C., Leimer, N., Andreoni, F., Achermann, Y., & Zinkernagel, A. S. (2017). High level methicillin resistance correlates with reduced Staphylococcus aureus endothelial cell damage.

Tarek A, Abdalla S, Dokmak NA, Ahmed AA, El-Mahdy TS, Safwat NA. (2024). Bacterial Diversity and Antibiotic Resistance Patterns of Community-Acquired Urinary Tract Infections in Mega Size Clinical Samples of Egyptian Patients: A Cross-Sectional Study. Cureus. 8;16(1):e51838. doi: 10.7759/cureus.51838.

Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L. and Fowler, V.G.J.r. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61.

Tuffs SW, Herfst CA, Baroja ML, Podskalniy VA, DeJong EN, Coleman CEM, McCormick JK. (2019). Regulation of toxic shock syndrome toxin-1 by the accessory gene regulator in Staphylococcus aureus is mediated by the repressor of toxins. Mol Microbiol. Oct;112(4):1163-1177. doi: 10.1111/mmi.14353.

Turner, N.A., Sharma-Kuinkel, B.K., Maskarinec, S.A. et al. (2019) Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17, 203–218 (2019).

Uehara, Y. (2022). Current Status of Staphylococcal Cassette Chromosome mec (SCCmec). Antibiotics, 11, 86. https://

Yassin N. A. (2022). Nasal Carriage of Methicillin-Resistant Staphylococcus aureus (MRSA) among Medical and Non-Medical Students of Sheikhan-Polytechnique College and Technical Institute, Iraq. Journal of University of Duhok., Vol. 25, No.2(Pure and Engineering Sciences), Pp 291-299.

Zhang, J., Tu, J., Chen, Y. et al. (2023). Clinical characteristics and homology analysis of Staphylococcus aureus from would infection at a tertiary hospital in southern Zhejiang, China. BMC Microbiol 23, 217 (2023).




How to Cite




Science Journal of University of Zakho