PREVALENCE OF PLASMID MEDIATED QNRA, QNRB AND QNRS AMONG CLINICAL ESCHERICHIA COLI ISOLATED FROM URINARY TRACT INFECTIONS IN DUHOK, KURDISTAN REGION OF IRAQ
DOI:
https://doi.org/10.25271/sjuoz.2023.11.4.1196Keywords:
E.coli, qnrABS, Fluroquinolone, UTIs, DuhokAbstract
Excessive use of antibiotics (such as fluoroquinolone) and inadequate infection control practices have turned antibiotics resistance (AMR) into a global, public health peril. The current study emphasizes on the prevalence of qnrA, qnrB, and qnrS plasmid in fluroquinolone (FQ) resistant Escherichia coli (E. coli) isolates from urinary tract samples and their correlation with the burden of resistance in these isolates. In this research, several E. coli strains were isolated from outpatients having urinary tract infections (UTIs) from Duhok province, Kurdistan Region of Iraq. Biochemical and Molecular confirmations were performed to confirm the isolates. Antibiotics susceptibility test was performed to detect the isolates antibiogram. Furthermore, polymerase chain reaction (PCR) amplification was used to detect the qnrA, B and S genes. Bioinformatics tools were used to perform the analysis of the results and data visualization. Forty isolates (out of 55) have been confirmed as E. coli. Antibiograms revealed that 70%, 65% and 63% of the isolates were resistant to Ciprofloxacin, Enrofloxacin and Levofloxacin, respectively. While there was variation in resistance to other antibiotics tested. The FQ resistant genes were detected in 17 (42.5%) isolates, with some isolates carrying more than one gene. The variant qnrS was the most predominant, as it has been detected in 14 isolates. The increasing rates of multidrug resistance E. coli isolates from UTIs, including FQ antibiotics, emphasizes the importance of carefully monitoring their use for UTI treatment.
References
Abdulrahman, I. S. (2018). Antimicrobial susceptibility pattern of pathogenic bacteria causing urinary tract infections at Azadi Hospital in Duhok CityKurdistan Region of Iraq. Science Journal of University of Zakho, 6(2), 46–50. DOI: https://doi.org/10.25271/2018.6.2.435
Al-Badr, A., & Al-Shaikh, G. (2013). Recurrent urinary tract infections management in women: a review. Sultan Qaboos University Medical Journal, 13(3), 359. Doi: 10.12816/0003256
Assafi, M. S. A., Ibrahim, N. M. R., Hussein, N. R., Taha, A. A., & Balatay, A. A. (2015). Urinary bacterial profile and antibiotic susceptibility pattern among patients with urinary tract infection in duhok city, kurdistan region, Iraq. International Journal of Pure and Applied Sciences and Technology, 30(2), 54.
Badamchi, A., Javadinia, S., Farahani, R., Solgi, H., & Tabatabaei, A. (2019). Molecular Detection of Plasmid Mediated Quinolone Resistant Genes in Uropathogenic E. coli from Tertiary Referral Hospital in Tehran Iran. Archives of Pharmacology and Therapeutics, 1(1), 19–24. doi: 10.33696/pharmacol.1.005
Baggio, D., & Ananda-Rajah, M. R. (2021). Fluoroquinolone antibiotics and adverse events. Australian Prescriber, 44(5), 161. Doi: 10.18773/austprescr.2021.035
Bajaj, P., Kanaujia, P. K., Singh, N. S., Sharma, S., Kumar, S., & Virdi, J. S. (2016). Quinolone co-resistance in ESBL-or AmpC-producing Escherichia coli from an Indian urban aquatic environment and their public health implications. Environmental Science and Pollution Research, 23, 1954–1959. Doi: https://doi.org/10.1007/s11356-015-5609-x
Bej, A. K., DiCesare, J. L., Haff, L., & Atlas, R. M. (1991). Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Applied and Environmental Microbiology, 57(4), 1013–1017. doi: 10.1128/aem.57.4.1013-1017.1991
Bush, N. G., Diez-Santos, I., Abbott, L. R., & Maxwell, A. (2020). Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules, 25(23), 5662. Doi: https://doi.org/10.3390/molecules25235662
CLSI. (2013). (M31-A4)Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals (Issue January). : Clinical and Laboratory Standards Institute.
CLSI. (2021). Clinical and Laboratory Standards Institute (CLSI): Performance standards for antimicrobial susceptibility testing; twenty fifth informational supplement. CLSI Document M100-S31, 2021.
Cornejova, T., Venglovsky, J., Gregova, G., Kmetova, M., & Kmet, V. (2015). Extended spectrum beta-lactamases in Escherichia coli from municipal wastewater. Annals of Agricultural and Environmental Medicine, 22(3). doi: 10.5604/12321966.1167710
Correia, S., Poeta, P., Hébraud, M., Capelo, J. L., & Igrejas, G. (2017). Mechanisms of quinolone action and resistance: where do we stand? Journal of Medical Microbiology, 66(5), 551–559. doi: https://doi.org/10.1099/jmm.0.000475
Doma, A. O., Popescu, R., Mituleţu, M., Muntean, D., Dégi, J., Boldea, M. V., Radulov, I., Dumitrescu, E., Muselin, F., Puvača, N., & Cristina, R. T. (2020). Comparative evaluation of qnrA, qnrB, and qnrS genes in Enterobacteriaceae ciprofloxacin-resistant cases, in swine units and a hospital from western Romania. Antibiotics, 9(10), 1–12. doi: 10.3390/antibiotics9100698
Düzgün, A. Ö., Okumuş, F., Saral, A., Çiçek, A. Ç., & Cinemre, S. (2019). Determination of antibiotic resistance genes and virulence factors in Escherichia coli isolated from Turkish patients with urinary tract infection. Revista Da Sociedade Brasileira de Medicina Tropical, 52. Doi: https://doi.org/10.1590/0037-8682-0499-2018
Fadhil Abdul-Husin, I., & Sabri Abdul-Razzaq, M. (2021). Plasmid-Mediated Mechanism of Quinolone Resistance on E. coli Isolates from Different Clinical Samples. Archives of Razi Institute, 76(3), 561–573. doi: 10.22092/ari.2021.355392.1679
FarajzadehSheikh, A., Veisi, H., Shahin, M., Getso, M., & Farahani, A. (2019). Frequency of quinolone resistance genes among extended-spectrum β-lactamase (ESBL)-producing Escherichia coli strains isolated from urinary tract infections. Tropical Medicine and Health, 47(1), 19. doi: 10.1186/s41182-019-0147-8
Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269–284. https://doi.org/10.1038/nrmicro3432
Foxman, B. (2014). Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics, 28(1), 1–13. https://doi.org/10.1016/j.idc.2013.09.003
Ghaffar, N. M., & Mohialdeen, N. H. (2023). isolation and molecular characterization of Campylobacter jejuni from local broiler chicken (lbc) and frozen imported chickens (ifc) in duhok province, kurdistan region-iraq. Science Journal of University of Zakho, 11(3), 386–395. https://doi.org/10.25271/sjuoz.2023.11.3.1136
Gupta, K., Hooton, T. M., & Stamm, W. E. (2001). Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Annals of Internal Medicine, 135(1), 41–50. doi: https://doi.org/10.7326/0003-4819-135-1-200107030-00012
Hami, I. A., & Ibrahim, K. S. (2023). Incidence of Methicillin-Resistant Staphylococcus Aureus (MRSA) Recovered from Patients with Urinary Tract Infections in Zakho City/Kurdistan-Iraq. Science Journal of University of Zakho, 11(1), 91–97. https://doi.org/10.25271/sjuoz.2023.11.1.1041
Hasan, S. M., & Ibrahim, K. S. (2022). Molecular Characterization of Extended Spectrum β -Lactamase ( ESBL ) and Virulence Gene-Factors in Uropathogenic Escherichia coli ( UPEC ) in Children in Duhok City , Kurdistan. https://doi.org/10.3390/antibiotics11091246
Hooper, D. C., & Jacoby, G. A. (2015). Mechanisms of drug resistance: Quinolone resistance. Annals of the New York Academy of Sciences, 1354(1), 12–31. doi: 10.1111/nyas.12830
Hussein, N. R., Daniel, S., Salim, K., & Assafi, M. S. (2017). Urinary tract infections and antibiotic sensitivity patterns among women referred to Azadi teaching hospital, Duhok, Iraq. Avicenna Journal of Clinical Microbiology and Infection, 5(2), 27–30. doi:10.34172/ajcmi.2018.05
Ibrahim, D. R., Dodd, C. E. R., Stekel, D. J., Meshioye, R. T., Diggle, M., Lister, M., & Hobman, J. L. (2023). Multidrug-Resistant ESBL-Producing E. coli in Clinical Samples from the UK. Antibiotics, 12(1), 1–22. doi: 10.3390/antibiotics12010169
Ibrahim, M. S., Khalid, H. M., & Mero, W. M. S. (2020). Molecular Characterization of Some Virulence Genes and Antibiotic Susceptibility Pattern among Uropathogenic Escherichia coli Isolated from Patient in Zakho City/Iraq. ZANCO J Pure Appl Sci, 32(2), 167–177.
Jacoby, G., Cattoir, V., Hooper, D., Martínez-Martínez, L., Nordmann, P., Pascual, A., Poirel, L., & Wang, M. (2008). Qnr Gene Nomenclature. Antimicrobial Agents and Chemotherapy, 52(7), 2297–2299. doi: 10.1128/AAC.00147-08
James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdela, J., & Abdelalim, A. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1789–1858. doi:https://doi.org/10.1016/S0140-6736(18)32279-7
Johan, P., Harley, I., & Prescott, M. (2003). Laboratory Exercise in Microbiology. McGraw-Hill. USA, 484, 149–1538.
Karczmarczyk, M., Martins, M., Quinn, T., Leonard, N., & Fanning, S. (2011). Mechanisms of fluoroquinolone resistance in Escherichia coli Isolates from food-producing animals. Applied and Environmental Microbiology, 77(20), 7113–7120. doi: 10.1128/AEM.00600-11
Kostakioti, M., Hultgren, S. J., & Hadjifrangiskou, M. (2012). Molecular blueprint of uropathogenic Escherichia coli virulence provides clues toward the development of anti-virulence therapeutics. Virulence, 3(7), 592–593. https://doi.org/10.4161/viru.22364
Kuo, P. Y., Lo, Y. T., Chiou, Y. J., Chen, C. A., Hidrosollo, J. H., Thuy, T. T. D., Zhang, Y. Z., Wang, M. C., Lin, T. P., Lin, W. H., & Kao, C. Y. (2022). Plasmid-mediated quinolone resistance determinants in fluoroquinolone-nonsusceptible Escherichia coli isolated from patients with urinary tract infections in a university hospital, 2009–2010 and 2020. Journal of Global Antimicrobial Resistance, 30, 241–248. doi: 10.1016/j.jgar.2022.06.004
Literak, I., Dolejska, M., Janoszowska, D., Hrusakova, J., Meissner, W., Rzyska, H., Bzoma, S., & Cizek, A. (2010). Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland. Applied and Environmental Microbiology, 76(24), 8126–8134. doi: https://doi.org/10.1128/AEM.01446-10
Martínez-Martínez, L., Pascual, A., & Jacoby, G. A. (1998). Quinolone resistance from a transferable plasmid. The Lancet, 351(9105), 797–799. https://doi.org/10.1016/S0140-6736(97)07322-4
McLellan, L. K., & Hunstad, D. A. (2016). Urinary Tract Infection: Pathogenesis and Outlook. Trends in Molecular Medicine, 22(11), 946–957. doi: 10.1016/j.molmed.2016.09.003
Mobley, H. L. T., Donnenberg, M. S., & Hagan, E. C. (2009). Uropathogenic Escherichia coli. EcoSal Plus, 3(2). https://doi.org/10.1128/ecosalplus.8.6.1.3
Naqid, Ibrahim A, Balatay, A. A., Hussein, N. R., Saeed, K. A., Ahmed, H. A., & Yousif, S. H. (2020a). Antibiotic susceptibility pattern of Escherichia coli isolated from various clinical samples in Duhok City, Kurdistan Region of Iraq. International Journal of Infection, 7(3). https://doi.org/10.5812/iji.103740
Naqid, Ibrahim Abdulqader, Hussein, N. R., Balatay, A. A., Saeed, K. A., & Ahmed, H. A. (2020b). The antimicrobial resistance pattern of Klebsiella pneumonia isolated from the clinical specimens in Duhok City in Kurdistan Region of Iraq. Journal of Kermanshah University of Medical Sciences, 24(2). https://doi.org/10.5812/jkums.106135
Nielubowicz, G. R., & Mobley, H. L. T. (2010). Host–pathogen interactions in urinary tract infection. Nature Reviews Urology, 7(8), 430–441. https://doi.org/10.1038/nrurol.2010.101
Nsofor, C. M., Tattfeng, M. Y., & Nsofor, C. A. (2021). High prevalence of qnrA and qnrB genes among fluoroquinolone-resistant Escherichia coli isolates from a tertiary hospital in Southern Nigeria. Bulletin of the National Research Centre, 45(1), 4–10. doi: 10.1186/s42269-020-00475-w
O’brien, V. P., Hannan, T. J., Nielsen, H. V, & Hultgren, S. J. (2017). Drug and vaccine development for the treatment and prevention of urinary tract infections. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, 589–646. https://doi.org/10.1128/9781555817404.ch24
Piekarska, K., Wołkowicz, T., Zacharczuk, K., Rzeczkowska, M., Chróst, A., Bareja, E., Olak, M., & Gierczyński, R. (2015). Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. International Journal of Antimicrobial Agents, 45(3), 238–243. https: //doi.org/ 10.1016/j.ijantimicag. 2014.09. 019.
Salah, F. D., Soubeiga, S. T., Ouattara, A. K., Sadji, A. Y., Metuor-Dabire, A., Obiri-Yeboah, D., Banla-Kere, A., Karou, S., & Simpore, J. (2019). Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lomé, Togo. Antimicrobial Resistance and Infection Control, 8(1), 1–8. doi: 10.1186/s13756-019-0552-0
Sedighi, I., Arabestani, M. R., Rahimbakhsh, A., Karimitabar, Z., & Alikhani, M. Y. (2015). Dissemination of extended-spectrum β-lactamases and quinolone resistance genes among clinical isolates of uropathogenic Escherichia coli in children. Jundishapur Journal of Microbiology, 8(7). doi: 10.5812/jjm.19184v2
Spellberg, B., & Doi, Y. (2015). The rise of fluoroquinolone-resistant Escherichia coli in the community: Scarier than we thought. Journal of Infectious Diseases, 212(12), 1853–1855. doi: 10.1093/infdis/jiv279
Stapleton, A. E., Wagenlehner, F. M. E., Mulgirigama, A., & Twynholm, M. (2020). Escherichia coli Resistance to Fluoroquinolones in Community-Acquired Uncomplicated Urinary Tract Infection in Women: a Systematic Review. Antimicrobial Agents and Chemotherapy, 64(10), e00862-20. doi: 10.1128/AAC.00862-20
Strahilevitz, J., Jacoby, G. A., Hooper, D. C., & Robicsek, A. (2009). Plasmid-mediated quinolone resistance: a multifaceted threat. Clinical Microbiology Reviews, 22(4), 664–689. https://doi.org/10.1128/cmr.00016-09
Tamadonfar, K. O., Omattage, N. S., Spaulding, C. N., & Hultgren, S. J. (2020). Reaching the end of the line: Urinary tract infections. Bacteria and Intracellularity, 83–99. doi: 10.1128/9781683670261.ch6
Warner, L. R., Mass, O., Lenn, N. D., Grantham, B. R., & Oxford, J. T. (2018). Growing and handling of bacterial cultures within a shared core facility for integrated structural biology program. In Growing and Handling of Bacterial Cultures. IntechOpen.
WHO. (2022). The WHO AWaRe (access, watch, reserve) antibiotic book.
Zanichelli, V., Sharland, M., Cappello, B., Moja, L., Getahun, H., Pessoa-Silva, C., Sati, H., van Weezenbeek, C., Balkhy, H., & Simão, M. (2023). The WHO AWaRe (Access, Watch, Reserve) antibiotic book and prevention of antimicrobial resistance. doi: 10.2471/BLT.22.288614
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Delveen R. Ibrahim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.