Profiling of Bacterial Species from Covid-19 Faecal Samples in Kurdistan Region-Iraq


  • Mohammed A. Hama-Ali Dept. of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region -F.R. Iraq.
  • Ayad H. Hasan Dept. of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region -F.R. Iraq



Gut microbiota, COVID-19, 16s RNA gene, SARS-CoV-2, Comamonas kerstersii


The invasion of intestinal cells by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have an impact on the gut bacteria. This study investigated the alteration of gut bacteria during SARS-CoV-2 viral infection and after recovery. Faecal samples were collected from ten RT-PCR-confirmed COVID-19 patients and five healthy participants (served as a control group) from November 21st, 2021 to April 1st, 2022. The faeces samples were collected three times, at the time of infection, after seven days of the infection and on day fifty after clearance of SARS-CoV-2. Serum samples were used to perform serological tests for the control group and COVID-19 survived patients. Pure culture techniques and classical and molecular approaches were used to isolate and identify the bacterial population in the collected faeces. The faecal bacterial communities of patients with COVID-19, those who recovered, and the five healthy people were compared. Significant alteration in culturable gut bacteria was observed in COVID-19 patients compared to the control group. This alteration was expressed by the existence of four bacterial species, which were Escherichia fergusonii, Citrobacter portucalensis, Comamonas kerstersii, and Shigella flexneri. In addition, two respiratory tract-associated bacterial pathogens, Klebsiella pneumoniae and Klebsiella aerogenes were recovered from the faecal samples of 40% of COVID-19 patients. The results even revealed that Staphylococcus aureus was more prevalent in faeces samples from those with SARS-CoV-2 infections than the healthy individuals. Faecal analysis of COVID-19 patients showed the existence and elevation of pathogenic bacteria in the large intestine in comparison to the healthy group. Further studies are required to highlight how an alteration of gut microbiomes affects the course of COVID-19 infection.

Author Biographies

Mohammed A. Hama-Ali, Dept. of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region -F.R. Iraq.

Dept. of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region -F.R. Iraq.

Ayad H. Hasan, Dept. of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region -F.R. Iraq

Dept. of Biomedical Sciences, College of Health Technology, Cihan University-Erbil, Kurdistan Region, Iraq. (


Atlas, R. M., Brown, A. E., & Parks, L. C. (1995). Laboratory Manual of Experimental Microbiology. Mosby-Year Book, Inc., U.S.A.

Brestoff, J.R. & Artis, D., (2013). Commensal bacteria at the interface of host metabolism and the immune system. Nature immunology, 14(7), pp.676-684.

Cappuccino, J. & Welsh, C., (2019). Microbiology: a laboratory manual. 12th ed. New York: Pearson, pp.151:217.

Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods. May;69(2):330-9.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y. & Yu, T., (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet, 395(10223), pp.507-513.

Chen, Y., Gu, S., Chen, Y., Lu, H., Shi, D., Guo, J., Wu, W.R., Yang, Y., Li, Y., Xu, K.J. & Ding, C., (2022). Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut, 71(1), pp.222-225

Cheung, K.S., Hung, I.F., Chan, P.P., Lung, K.C., Tso, E., Liu, R., Ng, Y.Y., Chu, M.Y., Chung, T.W., Tam, A.R. & Yip, C.C., (2020). Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology, 159(1), pp.81-95.

Covasa, M., Stephens, R.W., Toderean, R. & Cobuz, C., (2019). Intestinal sensing by gut microbiota: targeting gut peptides. Frontiers in endocrinology, 10, p.82.

Fan, Y. & Pedersen, O., (2020). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, pp.1-17.

Fanos, V., Pintus, M. C., Pintus, R., & Marcialis, M. A. (2020). Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. Journal of Pediatric and Neonatal Individualized Medicine (JPNIM), 9(1), e090139-e090139.

Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R. & Phillips, G.B., (1981). Manual of methods for general bacteriology.

Groves, H.T., Cuthbertson, L., James, P., Moffatt, M.F., Cox, M.J. & Tregoning, J.S., (2018). Respiratory disease following viral lung infection alters the murine gut microbiota. Frontiers in immunology, 9, p.182

Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., ... & Leong, A. S. Y. (2005). Multiple organ infection and the pathogenesis of SARS. The Journal of experimental medicine, 202(3), 415-424.

Gu, S., Chen, Y., Wu, Z., Chen, Y., Gao, H., Lv, L., Guo, F., Zhang, X., Luo, R., Huang, C. & Lu, H., (2020). Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clinical Infectious Diseases, 71(10), pp.2669-2678.

Hanada, S., Pirzadeh, M., Carver, K. Y., & Deng, J. C. (2018). Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Frontiers in immunology, 9, 2640.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X. & Cheng, Z., (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), pp.497-506.

Kho, Z.Y. & Lal, S.K., (2018). The human gut microbiome–a potential controller of wellness and disease. Frontiers in microbiology, 9, p.1835.

Liang, W., Feng, Z., Rao, S., Xiao, C., Xue, X., Lin, Z., Zhang, Q. & Qi, W., (2020). Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut, 69(6), pp.1141-1143.

Liu, Q., Mak, J. W. Y., Su, Q., Yeoh, Y. K., Lui, G. C. Y., Ng, S. S. S., ... & Ng, S. C. (2022). Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut, 71(3), 544-552.

Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L. & Pfaller, M.A., (2006). Manual of clinical microbiology: Volume 1 (No. Ed. 9). ASM press Washington USA.

Ogunrinola, G. A., Oyewale, J. O., Oshamika, O. O., & Olasehinde, G. I. (2020). The Human Microbiome and Its Impacts on Health. International journal of microbiology, 2020, 8045646.

Rhoads, D. D., Cox, S. B., Rees, E. J., Sun, Y., & Wolcott, R. D. (2012). Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing. BMC Infectious Diseases, 12(1), 1-8.

Robinson, C.J., Bohannan, B.J. & Young, V.B., (2010). From structure to function: the ecology of host-associated microbial communities. Microbiology and Molecular Biology Reviews, 74(3), pp.453-476.

Smith, A.C. & Hussey, M.A., (2005). Gram stain protocols. American Society for Microbiology, 1, p.14.

Wang, B., Yao, M., Lv, L., Ling, Z. & Li, L., (2017). The human microbiota in health and disease. Engineering, 3(1), pp.71-82.

Wang, J., Li, F., Wei, H., Lian, Z. X., Sun, R., & Tian, Z. (2014). Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell–dependent inflammation. Journal of Experimental Medicine, 211(12), 2397-2410.

Whiteside, S.A., Razvi, H., Dave, S., Reid, G. & Burton, J.P., (2015). The microbiome of the urinary tract—a role beyond infection. Nature Reviews Urology, 12(2), p.81

Wölfel, R., Corman, V.M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M.A., Niemeyer, D., Jones, T.C., Vollmar, P., Rothe, C. & Hoelscher, M., (2020). Virological assessment of hospitalized patients with COVID-2019. Nature, 581(7809), pp.465-469.

Yildiz, S., Mazel-Sanchez, B., Kandasamy, M., Manicassamy, B. & Schmolke, M., (2018). Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome, 6(1), pp.1-17.

YOON, S.-H., HA, S.-M., KWON, S., LIM, J., KIM, Y., SEO, H. & CHUN, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International journal of systematic and evolutionary microbiology, 67(5): 1613-1617.

Zuo, T., Zhang, F., Lui, G.C., Yeoh, Y.K., Li, A.Y., Zhan, H., Wan, Y., Chung, A.C., Cheung, C.P., Chen, N. & Lai, C.K., (2020). Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 159(3), pp.944-955.




How to Cite

Hama-Ali, M. A., & Hasan, A. H. (2023). Profiling of Bacterial Species from Covid-19 Faecal Samples in Kurdistan Region-Iraq. Science Journal of University of Zakho, 11(1), 11–15.



Science Journal of University of Zakho