ENHANCING NONLINEAR EQUATION SOLUTIONS THROUGH THE COMBINATION OF VARIANT NEWTON’S AND HALLEY’S METHODS

Authors

  • Kazhal Mohammed Ali Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region,
  • Bayda Gh. Fathi Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2025.13.4.1594

Keywords:

Newton’s method, Variant of Newton’s method, Halley’s method, Efficiency index, Nonlinear equations

Abstract

This work presents a new iterative method for solving single-variable nonlinear equations. The method achieves ninth-order convergence with just three derivative evaluations per step, offering both accuracy and lower computational cost. Unlike slower bracketing methods, it builds on faster open methods, though these may sometimes fail to converge. By blending ideas from Newton's and Halley's methods, the new approach provides strong performance, as shown by a detailed convergence analysis and MATLAB tests. Compared to existing techniques, it finds solutions in fewer steps and less time, making it especially effective for difficult nonlinear problems

      

Downloads

Download data is not yet available.

Author Biography

Bayda Gh. Fathi, Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq

Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq

References

Azure, I., Aloliga, G., & Doabil, L. (2019). Comparative Study of Numerical Methods for Solving Non-linear Equations Using Manual Computation. Mathematics Letters, 5(4), 41. DOI: 10.11648/j.ml.20190504.11

Azzo, S. M., & Manaa, S. A. (2022). Sumudu-Decomposition Method to Solve Generalized Hirota-Satsuma Coupled Kdv System. Science Journal of University of Zakho, 10(2), 43–47. DOI: 10.25271/sjuoz.2022.10.2.879

Elhasadi, O. I. (2007). Newton’s and Halley’s methods for real polynomials [Master’s thesis, University of Guelph]. University of 448 Guelph Atrium. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/1002

Engelberger, J. (2014). Springer Handbook of Robotics Robotics & Automation : Books for Robotics. June.

Goodman, R. O. Y. H., & Obel, J. K. W. R. (2017). High-Order Bisection Method For Computing Invariant Manifolds Of Two-Dimensional Maps. 21(7), 2017–2042. DOI: 10.1142/S0218127411029604

Kumar, M., Singh, A. K., & Srivastava, A. (2013). Various Newton-type iterative methods for solving nonlinear equations. Journal of the Egyptian Mathematical Society, 21(3), 334–339. DOI: 10.1016/j.joems.2013.03.001

Kusni, A., & Shamsul, A. (2016). Numerical Study of Some Iterative Methods for Solving Nonlinear Equations. 5(2), 1–10. Retrieved from www.ijesi.org

Madhu, K., & Jayaraman, J. (2016). Higher order methods for nonlinear equations and their basins of attraction. Mathematics, 4(2), 1–20. DOI: 10.3390/math4020022

Manaa, S. A., Easif, F. H., & Murad, J. J. (2021). Residual Power Series Method for Solving Klein-Gordon Schrödinger Equation. Science Journal of University of Zakho, 9(2), 123–127. DOI: 10.25271/sjuoz.2021.9.2.810

Martin, O. J. F. (2019). Molding the flow of light with metasurfaces. 2019 URSI Asia-Pacific Radio Science Conference, AP-RASC 2019, 32–43. DOI: 10.23919/URSIAP-RASC.2019.8738549

McDonough, J. M. (2007). Lectures in Basic Computational Numerical Analysis. Journal of Biomechanics, 39, 163. Retrieved from http://www.engr.uky.edu/~acfd/egr537-lctrs.pdf

Naseem, A., Rehman, M. A., & Abdeljawad, T. (2022). A Novel Root-Finding Algorithm with Engineering Applications and its Dynamics via Computer Technology. IEEE Access, 10(1), 19677–19684. DOI: 10.1109/ACCESS.2022.3150775

Nazeer, W., & Tanveer, M. (2016). Modified Golbabai and Javidi ’ S Method ( Mgjm ) for Solving Modified Golbabai and Javidi ’ S Method ( Mgjm ) for Solving Nonlinear Functions With Convergence of Order Six. January 2015.

Noor, M. A., Khan, W. A., & Hussain, A. (2007). A new modified Halley method without second derivatives for nonlinear equation. Applied Mathematics and Computation, 189(2), 1268–1273. DOI: 10.1016/j.amc.2006.12.011

Reddy, J. N. (2003). Mechanics of Laminated Composite Plates and Shells. Mechanics of Laminated Composite Plates and Shells. DOI: 10.1201/b12409

Sabali, A. J., Manaa, S. A., & Easif, F. H. (2021). New Successive Approximation Methods for Solving Strongly Nonlinear Jaulent-Miodek Equations. Science Journal of University of Zakho, 9(4), 193–197. DOI: 10.25271/sjuoz.2021.9.4.869

Scavo, T. R., & Thoo, J. B. (1995). On the Geometry of Halley’s Method. The American Mathematical Monthly, 102(5), 417–426. DOI: 10.1080/00029890.1995.12004594

Soomro, S. A., Shaikh, A. A., Qureshi, S., & Ali, B. (2023). A Modified Hybrid Method For Solving Non-Linear Equations With Computational Efficiency. VFAST Transactions on Mathematics, 11(2), 126–137. DOI: 10.21015/vtm.v11i2.1620

Silalahi, B. P., Laila, R., & Sitanggang, I. S. (2017). A combination method for solving nonlinear equations. IOP Conference Series: Materials Science and Engineering, 166(1), 12011.

Tasiu, A. R., Abbas, A., Alhassan, M. N., & Umar, A. N. (2020). Comparative Study on Some Methods of Handling Nonlinear Equations. Anale. Seria Informatică, XVIII(2), 2–5.

Thota, S., Gemechu, T., & Ayoade, A. A. (2023). on New Hybrid Root-Finding Algorithms for Solving Transcendental Equations Using Exponential and Halley’S Methods. Ural Mathematical Journal, 9(1), 176–186. DOI: 10.15826/umj.2023.1.016

Weerakoon, S., & Fernando, T. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87–93.

Yasir Abdul-Hassan, N. (2016). New Predictor-Corrector Iterative Methods with Twelfth-Order Convergence for Solving Nonlinear Equations. American Journal of Applied Mathematics, 4(4), 175. DOI: 10.11648/j.ajam.20160404.12

Downloads

Published

2025-10-08

How to Cite

Mohammed Ali, K., & Fathi, B. (2025). ENHANCING NONLINEAR EQUATION SOLUTIONS THROUGH THE COMBINATION OF VARIANT NEWTON’S AND HALLEY’S METHODS. Science Journal of University of Zakho, 13(4), 589–598. https://doi.org/10.25271/sjuoz.2025.13.4.1594

Issue

Section

Science Journal of University of Zakho