Bounds For the Coefficients of Two New Subclasses of Bi-Univalent Functions

Authors

  • khalid Ibrahim Abdullah College of Basic Education, University of Raparin, Rania, Kurdistan Region – Iraq
  • Nafya H. Mohammed College of Basic Education, University of Raparin, Rania, Kurdistan Region – Iraq

DOI:

https://doi.org/10.25271/sjuoz.2022.10.2.922

Keywords:

Taylor–Maclaurin Series, Univalent Function, Coefficient Bounds, Bi-univalent Function

Abstract

This article discusses two new subclasses of the bi-univalent functions category ∑ in the open unit disk . The primary goal of the article is to obtain estimations of the coefficients  and for the functions that are within these two new subclasses.

Author Biographies

khalid Ibrahim Abdullah, College of Basic Education, University of Raparin, Rania, Kurdistan Region – Iraq

College of Basic Education, University of Raparin, Rania, Kurdistan Region – Iraq (khalid.ibrahimabdullah@uor.edu.krd)

Nafya H. Mohammed, College of Basic Education, University of Raparin, Rania, Kurdistan Region – Iraq

College of Basic Education, University of Raparin, Rania, Kurdistan Region – Iraq (nafya.mohammad@uor.edu.krd)

References

Brannan, D. A., Clunie, J., & Clunie, J. (Eds.). (1980). Aspects of contemporary complex analysis. Academic Press.
Brannan, D. A., Clunie, J., & Kirwan, W. E. (1970). Coefficient estimates for a class of star-like functions. Canadian Journal of Mathematics, 22(3), 476-485.
Brannan, D. A., & Taha, T. S. (1988). On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications (pp. 53-60). Pergamon.
Breaz, D., Breaz, N., & Srivastava, H. M. (2009). An extension of the univalent condition for a family of integral operators. Applied Mathematics Letters, 22(1), 41-44.
Chichra, P. N. (1977). New subclasses of the class of close-to-convex functions. Proceedings of the American Mathematical Society, 62(1), 37-43.
Caglar, M., & Deniz, E. (2017). Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat, 66, 85-91.
Çağlar, M., Orhan, H., & Yağmur, N. (2013). Coefficient bounds for new subclasses of bi-univalent functions. Filomat, 27(7), 1165-1171.
Ding, S. S., Ling, Y., & Bao, G. J. (1995). Some properties of a class of analytic functions. Journal of Mathematical Analysis and applications, 195(1), 71-81.
Duren, P. L. (2001). Univalent functions (Vol. 259). Springer Science & Business Media.
Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24(9), 1569-1573.
Gao, C. Y., & Zhou, S. Q. (2007). Certain subclass of starlike functions. Applied mathematics and computation, 187(1), 176-182.
Hussain, S., Khan, S., Zaighum, M. A., Darus, M., & Shareef, Z. (2017). Coefficients bounds for certain subclass of biunivalent functions associated with Ruscheweyh-Differential operator. Journal of Complex Analysis, 2017.
Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American mathematical society, 18(1), 63-68.
Netanyahu, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in¦ z¦< 1. Archive for rational mechanics and analysis, 32(2), 100-112.
Pommerenke, C. (1975). Univalent functions. Vandenhoeck and Ruprecht.
Ruscheweyh, S. (1975). New criteria for univalent functions. Proceedings of the American Mathematical Society, 49(1), 109-115.
Srivastava, H. M., Bulut, S., Çağlar, M., & Yağmur, N. (2013). Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat, 27(5), 831-842.
Srivastava, H. M., & Eker, S. S. (2008). Some applications of a subordination theorem for a class of analytic functions. Applied Mathematics Letters, 21(4), 394-399.
Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10), 1188-1192.
Styer, D., & Wright, D. J. (1981). Results on bi-univalent functions. Proceedings of the American Mathematical Society, 82(2), 243-248.
Tan, D.L.(1984). Coefficient estimates for bi-univalent functions. Chinese Ann. Math. Ser. A, 5(5), 559-568.
Xu, Q. H., Gui, Y. C., & Srivastava, H. M. (2012). Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters, 25(6), 990-994.
Yang, D. G., & Liu, J. L. (2010). On a class of analytic functions with missing coefficients. Applied Mathematics and Computation, 215(9), 3473-3481.

Downloads

Published

2022-06-07

How to Cite

Abdullah, khalid I., & Mohammed, N. H. (2022). Bounds For the Coefficients of Two New Subclasses of Bi-Univalent Functions. Science Journal of University of Zakho, 10(2), 66–69. https://doi.org/10.25271/sjuoz.2022.10.2.922

Issue

Section

Science Journal of University of Zakho

Most read articles by the same author(s)