PHYTOREMEDIATION POTENTIAL OF Catalpa bignonioides IN CRUDE OIL-CONTAMINATED SOILS: EVIDENCE FROM DUHOK, KURDISTAN REGION

Authors

  • Dereen Jaladet Albeyboni Department of Forestry, College of Agricultural Engineering Science, University of Duhok, Duhok, Iraq
  • Bayan Hazim Ahmed Department of Forestry, College of Agricultural Engineering Science, University of Duhok, Duhok,
  • Ramadhan Omer Hussain Department of Horticulture, College of Agricultural Engineering Science, University of Duhok, Duhok, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2025.13.3.1559

Keywords:

Crude Oil Pollution, Phytoremediation, Hydrocarbons, Soil Remediation, Catalpa Bignonioides

Abstract

Phytoremediation is a promising method for cleaning crude oil-contaminated soils. This study aimed to evaluate the potential of Catalpa bignonioides seedlings for remediating soil polluted with 1% and 2% (w/w) crude oil. One- and two-year-old seedlings were grown for eight months under contaminated conditions. Plant growth parameters, crude oil degradation percentage, total petroleum hydrocarbons (TPH), soil pH, electrical conductivity (EC), organic matter (OM), and nitrogen (N), phosphorus (P), and potassium (K) levels in both soil and plant shoots were measured. The seedlings successfully grew in contaminated soil, with no plant mortality observed, despite some leaf yellowing and necrosis. Chlorophyll a remained unaffected, while chlorophyll b significantly decreased. Plant height, shoot and root biomass were significantly reduced at 2% oil concentration. Soil pH slightly decreased, while EC and OM increased with contamination. TPH analysis showed complete removal of 10 hydrocarbon fractions (C3–C8, C10–C14), with degradation rates ranging from 70.37% to 84.02%. Crude oil significantly affected soil N and P levels but not K; in plant tissues, only N was significantly altered. Two-year-old seedlings exhibited greater growth and higher N and K content than younger plants. These findings confirm the species’ potential for phytoremediation of crude oil-contaminated soils

References

Abdallah, A. H., Elhussein, A. A., & Ibrahim, D. A. (2023). Phytoremediation of crude oil contaminated soil using Sudanese plant species Acacia sieberiana Tausch. International Journal of Phytoremediation, 25(3), 314–321. https://doi.org/10.1080/15226514.2022.2083575

Adenipekun, C. O., Oyetunji, O. J., & Kassim, L. Q. (2009). Screening of Abelmoschus esculentus L. Moench for tolerance to spent engine oil. Journal of Applied Biosciences, 20, 1131–1137.

Agim, L. C., Amos, H., Osisi, A., Okoli, H., & Egboka, N. (2021). Lethality of crude oil contamination on properties of soil and growth parameters of maize (Zea mays L.). International Journal of Environmental Sciences & Natural Resources, 28(3), 556238. DOI:10.19080/IJESNR.2021.28.556238

Agnello, A. C., Morelli, I. S., & Del Panno, M. T. (2020). Plant-microbiome interactions in hydrocarbon-contaminated soils. In N. K. Arora, S. Mehnaz, & R. Balestrini (Eds.), Plant microbe symbiosis (pp. 177–202). Springer. https://doi.org/10.1007/978-3-030-36248-5_10

Al-Obaidy, A. H. J., Al-Anbari, R. H., & Hassan, S. M. (2016). Phytoremediation of soil polluted with Iraqi crude oil by using cotton plant. Mesopotamia Environmental Journal, 3(1), 10–16. https://doi.org/10.1051/matecconf/201816205019

Al-Obaidy, R. H., Al-Anbari, R. H., & Hassan, S. M. (2019). Reducing total petroleum hydrocarbon from soil polluted with Iraqi crude oil by phytoremediation technology. Engineering and Technology Journal, 37(Part C, 1), 19–21. https://doi.org/10.30684/etj.37.1C.4

Allison, L. E. (1965). Organic carbon. In C. A. Black (Ed.), Methods of soil analysis: Part 2—Chemical and microbiological properties (pp. 1367–1378). American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.c39

AOAC International. (2004). Official methods of analysis of the Association of Official Analytical Chemists (15th ed.). AOAC International.

Ayers, R. S., & Westcot, D. W. (1985). Water Quality for Agriculture. FAO.

Ayuba, D. K., Aliba, N. V., Oluwole, M. O., & Nzamouhe, M. (2020). Efficacy of Eucalyptus camaldulensis (Dehnh) in the phytoremediation of petroleum hydrocarbon polluted soils. IOSR Journal of Environmental Science, Toxicology and Food Technology, 14(8), 38–47. https://doi.org/10.9790/2402-1408023847

Barua, D., Buragohain, J., & Sarma, S. K. (2011). Certain physicochemical changes in the soil brought about by contamination of crude oil in two oil fields of Assam, NE India. European Journal of Experimental Biology, 1(3), 154–161.

Baruah, P., Saikia, R. R., Baruah, P. P., & Deka, S. (2014). Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk. Environmental Science and Pollution Research, 21(21), 12530–12538. https://doi.org/10.1007/s11356-014-3195-y

Brady, N. C., & Weil, R. R. (2008). The Nature and Properties of Soils (14th ed.). Pearson Education.

Brown, M., & Lee, J. (2020). "Buffering capacity of soils in polluted environments." Journal of Soil Chemistry and Biology, 27(3), 198–210.

Butnariu, M. (2018). Global environmental pollution problems. Environmental Analysis & Ecology Studies, 1(5), 1-2. http://doi.org/10.31031/EAES.2018.01.000522

Chapman, D. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. 2nd Edition. UNESCO, WHO, UNEP. https://iris.who.int/handle/10665/41850

Chukwu, E., & Ogbonna, D. N. (2024). Effects of different levels of spent engine oil on soil physicochemical properties using different texturally contrasting soils. International Journal of Environmental Sciences & Natural Resources, 29(2), 1–9. https://doi.org/10.31248/JASP2024.496

Ekperi, N. I., Ukpaka, C. P., Achinike, O. W., & Tom-Cyprian, N. (2021). Model to predict the non-competitive inhibition of petroleum hydrocarbon degradation. Journal of Petroleum Engineering & Technology, 11(3), 1–6.

Escalante-Espinosa, E., Gallegos-Martínez, M. E., Favela-Torres, E., & Gutiérrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59(3), 405–413. https://doi.org/10.1016/j.chemosphere.2004.10.034

Fageria, N. K., & Moreira, A. (2011). The role of mineral nutrition on root growth of crop plants. Advances in Agronomy, 110, 251–331. https://doi.org/10.1016/B978-0-12-385531-2.00004-9

Food and Agriculture Organization of the United Nations. (2024). Global status of salt-affected soils: Main report (ISBN 978-92-5-139307-9). FAO. Retrieved from https://openknowledge.fao.org/handle/20.500.14283/cd3044en

Fu, Z., Ge, X., Gao, Y., Liu, J., Ma, Y., Yang, X., & Meng, F. (2022). Effects of Salinity and Oil Contamination on the Soil Seed Banks of Three Dominant Vegetation Communities in the Coastal Wetland of the Yellow River Delta. Forests, 13(4), 615. https://doi.org/10.3390/f13040615

Haas, P. M. (2001). Environment: pollution. Managing Global Issues: Lessons Learned. Washington DC: Carnegie Endowment for International Peace. pp. 310-353.

Havlin, J. L., Tisdale, S. L., Nelson, W. L., & Beaton, J. D. (2016). Soil Fertility and Fertilizers. 8th Edition. Pearson.

Hussein, Z. S., Hamido, N., Hegazy, A. K., El-Dessouky, M. A., Mohamed, N. H., & Safwat, G. (2022). Phytoremediation of crude petroleum oil pollution: A review. Egyptian Journal of Botany, 62(3), 611–640. https://doi.org/10.21608/ejbo.2022.136551.1980

Jackson, M. L. (1958). Soil chemical analysis. Prentice-Hall Inc

John, R. C., Ntino, E. S., & Itah, A. Y. (2016). "Impact of Crude Oil on Soil Nitrogen Dynamics and Uptake by Legumes Grown in Wetland Ultisol of the Niger Delta, Nigeria." Journal of Environmental Protection, 7(4), 507–515. http://file.scirp.org/pdf/JEP_2016031714534264.pdf

Keeler, H. L. (2005). Our native trees and how to identify them: A popular study of their habits and their peculiarities (Vol. 4). Kent State University Press.

Khaled, B. M. T., Albeyboni, D. J. M., Ahmed, B. H., Haji, G. Y., & Youssef, S. M. A. (2023). Spatial distribution of atmospheric pollution in Duhok urban area by using GIS tools. Science Journal of University of Zakho, 11(2), 209–214. https://doi.org/10.25271/sjuoz.2023.11.2.939

Koul, B., Taak, P., Koul, B., & Taak, P. (2018). Soil pollution: causes and consequences. Biotechnological strategies for effective remediation of polluted soils, 1-37. https://doi.org/10.1007/978-981-13-2420-8

Lal, R., & Shukla, M. K. (2004). Principles of soil physics. CRC Press.

Landrigan, P.J., Fuller, R., Acosta, N.J.R., Adeyi, O., Arnold, R., Basu, N., 2017. The Lancet Commission on pollution and health. Lancet 391 (10119), 462512. Available from: https://doi.org/10.1016/S0140-6736(17)32345-0

Lee, J., & Park, H. (2019). "Plant-Microbe Synergies in Petroleum Hydrocarbon Remediation." Environmental Biology and Ecology, 34(3), 210–225. http://doi.org/10.1016/S0140-6736(17)32345-0

Li, Y. T., Zhang, J. J., Li, Y. H., Chen, J. L., & Du, W. Y. (2021). Treatment of soil contaminated with petroleum hydrocarbons using activated persulfate oxidation, ultrasound, and heat: A kinetic and thermodynamic study. Chemical Engineering Journal, 428, 131336. http://doi.org/10.1016/j.cej.2021.131336

Ma, H., Li, Q., Egamberdieva, D., & Bellingrath-Kimura, S. D. (2022). A Case Study in Desertified Area: Soybean growth responses to soil structure and Biochar Addition Integrating Ridge Regression Models. Agronomy, 12(6), 1341. http://doi.org/10.3390/agronomy12061341

Marschner, P. (2012). Mineral Nutrition of Higher Plants. 3rd Edition. Academic Press.

Martins, T., Barros, A. N., Rosa, E., & Antunes, L. (2023). Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules, 28(14),5344. http://doi:org/10.3390/molecules28145344

Masu, S., Cojocariu, L., Bordeian, D. M., Marinelhorablaga, M. F., & Morariu, F. (2016). Phytoremediation of oil polluted soils and the effect of petroleum product on the growth of Glycine max. Revista de Chimie, 67(9), 1774–1777.

Mehrasbi, M. R., Haghighi, B., Shariat, M., Naseri, S., & Naddafi, K. (2003). Biodegradation of petroleum hydrocarbons in soil. Iranian Journal of Public Health, 32(1), 28–32.

Mohammed, A. O. (2013). Evaluation of Multi-Storey Housing Projects in the Context of Sustainability/The City of Duhok (Doctoral dissertation, University of Duhok).

Moubasher, H. A., Hegazy, A. K., Mohamed, N. H., Moustafa, Y. M., Kabiel, H. F., & Hamad, A. A. (2015). Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration & Biodegradation, 98, 113-120. https://doi.org/10.1016/j.ibiod.2014.11.019

Nwakwasi, N. L., Okoro, B. C., Dike, B. U., & Agunwamba, A. N. J. (2019). Modeling of soil phosphorus depletion in crude oil contaminated soil. IOSR Journal of Engineering (IOSRJEN), 9(1), 86–92.

Osipova, R. A., Gilyazov, M. Y., Kuzhamberdieva, S. Z., & Abzhalelov, B. B. (2020). Impact of oil contamination of grey forest soil on its nutrient status and plant safety. BIO Web of Conferences, 27, Article 00046. https://doi.org/10.1051/bioconf/20202700046

Oyedeji, A. A., Besenyei, L., Kayode, J., & Fullen, M. A. (2022). An appraisal of phytoremediation as an alternative and effective remediation technology for crude oil-contaminated soils: A review. African Journal of Environmental Science and Technology, 16(8),311-319.https://doi.org/10.5897/AJEST2017.2350

Pilipović, A., Orlović, S., Kesić, L., & Pajević, S. (2012). Growth and plant physiological parameters as markers for selection of poplar clones for crude oil phytoremediation. Šumarski List, 136(11-12), 551-558.

Rodríguez-Eugenio, N., McLaughlin, M., & Pennock, D. (2018). Soil pollution: A hidden reality. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/i9183en

Rowell, D. L. (2014). Soil Science: Methods and Applications. Longman Scientific & Technical. https://doi.org/10.4324/9781315844855

Ryan, J., & Astafan, G. (2003). Soil and plant analysis laboratory guide. International Center for Agricultural Research in the Dry Areas (ICARDA).

Saha, J. K., Selladurai, R., Coumar, M. V., Dotaniya, M. L., Kundu, S., & Patra, A. K. (Eds.). (2017). Soil pollution: An emerging threat to agriculture. Springer Singapore. https://doi.org/10.1007/978-981-10-4274-4

Saikia, T., Bora, J., & Gogoi, C. (2023). Impact of crude oil contamination on soil physicochemical properties around the Sildubi Oil Spill, Borhola, Assam. Int. J. Plant Soil Sci, 35(22), 241-253. https://doi.org/10.9734/IJPSS/2023/v35i224130

Smith, L., & Adams, R. (2020). "Plant Responses to Hydrocarbon Stress: Implications for Phytoremediation." Journal of Environmental Botany, 45(3), 221–234.

Stevenson, F. J., & Cole, M. A. (1999). Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients (2nd ed.). John Wiley & Sons

Sun, J., Bi, S., Jin, S., Wang, Y., Chen, H., Ruoyi, N., & Quan, J. E. (2024). Influence of various growth modulators on the rooting, enzymatic activity, and nutrient content of Catalpa bignonioides (Bignoniaceae). Pakistan Journal of Botany, 56(1), 75–84. http://dx.doi.org/10.30848/PJB2024-1(15)

Tang, K. H. D., & Angela, J. (2019). Phytoremediation of crude oil-contaminated soil with local plant species. IOP Conference Series: Materials Science and Engineering, 495, 012054. https://doi.org/10.1088/1757-899X/495/1/012054

Total Petroleum Hydrocarbon Criteria Working Group. (1998). Analysis of petroleum hydrocarbons in environmental media (Vol. 1). Amherst Scientific Publishers.

Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health (pp. 419-429). Elsevier.7. https://doi.org/10.1016/B978-0-12-819001-2.00021-8

USDA. (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (2nd ed.). United States Department of Agriculture, Natural Resources Conservation Service.

Wang, J., Zhang, Z., Su, Y., He, W., He, F., & Song, H. (2008). Phytoremediation of petroleum polluted soil. Petroleum Science, 5, 167-171. https://doi.org/10.1007/s12182-008-0026-0

Wang, Y., Feng, J., Lin, Q., Lyu, X., Wang, X., & Wang, G. (2013). Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China. Chinese geographical science, 23(6), 708-715. https://doi.org/10.1007/s11769-013-0641-6

WHO. (2017). Guidelines for Drinking-Water Quality. 4th Edition.

Wilson, J., & Carter, P. (2017). "Age-Dependent Responses of Tree Seedlings to Environmental Stressors." Plant Science Today, 29(4), 184–192.

Wintermans, J. F. G. M., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochimica et Biophysica Acta, 109(2), 448–453. https://doi.org/10.1016/0926-6585(65)90170-6Semantic Scholar+9

Xiao, N., Liu, R., Jin, C., & Dai, Y. (2015). Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecological Engineering, 75, 384–391. https://doi.org/10.1016/j.ecoleng.2014.12.008

Downloads

Published

2025-07-05

How to Cite

Albeyboni, dereen, Ahmed, B. H., & Hussain, R. O. (2025). PHYTOREMEDIATION POTENTIAL OF Catalpa bignonioides IN CRUDE OIL-CONTAMINATED SOILS: EVIDENCE FROM DUHOK, KURDISTAN REGION. Science Journal of University of Zakho, 13(3), 388–399. https://doi.org/10.25271/sjuoz.2025.13.3.1559

Issue

Section

Science Journal of University of Zakho