A STUDY OF THE RELATIONSHIP BETWEEN THE OCTANE NUMBER AND THE CHEMICAL COMPOSITION OF REGULAR, MIDGRADE, AND PREMIUM GASOLINE

Authors

  • Fanar M. Bamerni College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq.

DOI:

https://doi.org/10.25271/sjuoz.2024.12.1.1235

Keywords:

Gasoline, Octane Number, Sulfur Content, Reid Vapor Pressure, Gasoline Distillation

Abstract

The present  study was conducted at Zakho City in Northern Iraq to evaluate three different types of gasoline: Regular, Midgrade, and Premium. These types of gasoline are categorized based on their octane rating, which was measured to verify their classification. The results showed that the initial classification was accurate, with respective values of 87.5, 89.8, and 91.1. The  study evaluated the three grades of gasoline available  at Zakho Gas Stations in Northern Iraq, including Regular, Midgrade, and Premium. The study  also compared the chemical composition of the three gasoline grades in terms of aromatics, olefin, sulfur content, and oxygen content. All the three gasoline grades met the American Society for Testing and Materials (ASTM) standard for chemical composition, and all had acceptable specific gravities. However, Midgrade gasoline is not recommended for use during the summer due to its high Reid vapor pressure (RVP) value, low Initial boiling point (IBP), and final boiling point( FBP). In general, the  study showed that the Regular and Premium gasoline types sold in North  of Iraq meet international quality standards. However, Midgrade gasoline is not recommended for use during the summer due to its high RVP value, low IBP, and FBP, which can lead to increased volatility and environmental pollution,

Moreover, using this type of gasoline may cause problems with the car engine.

References

Aboul-Fotouh, T. M., Sherif, K., Ibrahim, M. A., Sadek, M. A., & Elazab, H. A. (2019). High Octane Number Gasoline-Ether Blend. International Journal of Innovative Technology and Exploring Engineering, 8, 732–739.

Ahmed, B. S., Salih, L. O. H., Ameen, B. H., Faraj, M. M., Mahmud, B. D., & Mustafa, R. W. (2022). Improve Ignition Quality of Gas Condensate from Khor-Mhor Fields in Chamchamal Kurdistan Region – Iraq Abstract. Journal of Petroleum & Environmental Biolechnology, 13(10004), 1–6. https://doi.org/10.35248/2157-7463.22.13.4

Ahmed, L. M. (2007). Determination of Some Physical and Chemical Properties for Different Samples of Petroleum Lubricants B- Materials and Procedure : National Journal of Chemistry, 25(1), 139–147.

Alahmer, A., & Aladayleh, W. (2016). Effect two grades of octane numbers on the performance, exhaust and acoustic emissions of spark ignition engine. Fuel, 180, 80–89.

Allmägi, R., Jansons, M., Ritslaid, K., & Ilves, R. (2023). Ethanol Utilization in Spark-Ignition Engines and Emission Characteristics. In Bioethanol: A Green Energy Substitute for Fossil Fuels (pp. 255–277). Springer.

Amin, Fanar, M. S. (2011). Evaluation and Improvement of Gasoline and Naphtha Cut of Tawki Crude Oil Wells , Zakho. M.Sc. Thesis Submitted to the Council of the College of Education/ University of Zakho (Issue June). University of Zakho.

ASTM D4294 -08a. (2010). Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry: Vol. 5.02. https://doi.org/10.1520/D4294-10

ASTM Standard D2699. (2009). Standard test method for research octane number of spark-ignition engine fuel. https://doi.org/10.1520/D2699-23

ASTM Standard D2700-23. (2009). Standard test method for motor octane number of spark-ignition engine fuel. https://doi.org/10.1520/D2700-23

ASTM Standard D4814. (2010). Standard specification for automotive spark-ignition engine fuel. https://doi.org/10.1520/D4814-22

ASTM Standard D86-18. (2019). Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure. https://doi.org/10.1520/D0086-18

Babazadeh Shayan, S., Seyedpour, S. M., & Ommi, F. (2012). Effect of oxygenates blending with gasoline to improve fuel properties. Chinese Journal of Mechanical Engineering (English Edition), 25(4), 792–797. https://doi.org/10.3901/CJME.2012.04.792

Blumberg, K. O., Walsh, M. P., & Pera, C. (2003). Low-Sulfur Gasoline & Diesel: The Key to Lower Vehicle Emissions. The International Coucil on Clean Transportation (ICCT), May.

ÇANAKCI, M. (2004). The effect of Octane Number higher than Engine requirement on the Engine performance and emission. Applied Thermal Engineering.

Cheng, W. K., Hamrin, D., Heywood, J. B., Hochgreb, S., Min, K., & Norris, M. (1993). An overview of hydrocarbon emissions mechanisms in spark-ignition engines. SAE Technical Paper 932708.

Chong-Lin Song, Zhang, W.-M., Pei, Y.-Q., Fan, G.-L., & Xu, G.-P. (2006). Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions. Atmospheric Environment, 40(11), 1957–1970.

D’andrea, T., Henshaw, P. F., & Ting, D.-K. (2004). The addition of hydrogen to a gasoline-fuelled SI engine. International Journal of Hydrogen Energy, 29(14), 1541–1552.

Dawood, L. M., & Ismayyir, D. K. (2023). Quality-Cost Analysis of Gasoline Production Process. Journal of Engineering, 19(12), 1634–1646. https://doi.org/10.31026/j.eng.2013.12.11

Domask, W. G. (1984). Introduction to petroleum hydrocarbons. Chemistry and composition in relation to petroleum-derived fuels and solvents. Renal Effects of Petroleum Hydrocarbons. Princeton Scientific Publ., Princeton NJ, Pp l-25.

El-Naggar, A. Y., & Al Majthoub, M. M. (2013). Study the toxic effects of aromatic compounds in gasoline in Saudi Arabia petrol stations. International Journal of Chemical Sciences, 11(1), 106–120.

Ezeldin, M. (2015). Quality Improvement of Reformat Gasoline. January 2016. http://www.journalcra.com

Faruq, U. Z., Runde, M., Danshehu, B. G., Yahaya, H. N., Zuru, A. A., & Muhammad, A. B. (2012). Comparative Studies of Gasoline Samples Used in Nigeria. 20(2), 87–92.

Ferrari, G., Onorati, A., & D’Errico, G. (2022). Internal combustion engines. Società Editrice Esculapio.

Fodor, G. E., Mason, R. A., & Hutzler, S. A. (1999). Estimation of middle distillate fuel properties by FT-IR. Applied Spectroscopy, 53(10), 1292–1298.

Gaspar, D. J., Phillips, S. D., Polikarpov, E., Albrecht, K. O., Jones, S. B., George, A., Landera, A., Santosa, D. M., Howe, D. T., & Baldwin, A. G. (2019). Measuring and predicting the vapor pressure of gasoline containing oxygenates. Fuel, 243, 630–644.

Government of INDIA. (2014). Auto Fuel Vision and Policy 2025, Report of The Expert Committee. https://policy.asiapacificenergy.org/sites/default/files/Auto Fuel Vision and Policy 2025 - Report of the Expert Committee.pdf

Graf, D., Neuner, P., & Rauch, R. (2023). Standard-Compliant Gasoline by Upgrading a DTG-Based Fuel through Hydroprocessing the Heavy-Ends and Blending of Oxygenates. Fuels, 4(2), 156–173. https://doi.org/10.3390/fuels4020010

Hajbabaei, M., Karavalakis, G., Miller, J. W., Villela, M., Xu, K. H., & Durbin, T. D. (2013). Impact of olefin content on criteria and toxic emissions from modern gasoline vehicles. Fuel, 107, 671–679.

Harley, R. A., Coulter-Burke, S. C., & Yeung, T. S. (2000). Relating liquid fuel and headspace vapor composition for California reformulated gasoline samples containing ethanol. Environmental Science & Technology, 34(19), 4088–4094.

Have, C., Assurance, L., Ratings, T. O., & Accurate, A. (1990). GASOLINE Consumers Have Limited Assurance That Octane Ratings Are Accurate T &.

Hochhauser, A. M. (2009). Review of prior studies of fuel effects on vehicle emissions. SAE International Journal of Fuels and Lubricants, 2(1), 541–567.

Hoffman, H. L. (1992). Petroleum and Its Products. In Riegel’s Handbook of Industrial Chemistry (pp. 480–509). Springer.

Houtchens, M. K. (2009). CHAPTER 8 - Toxic Encephalopathies II: Leukoencephalopathies. In M. R. DOBBS (Ed.), Clinical Neurotoxicology (pp. 88–96). W.B. Saunders. https://doi.org/https://doi.org/10.1016/B978-032305260-3.50014-9

Hsieh, W.-D., Chen, R.-H., Wu, T.-L., & Lin, T.-H. (2002). Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmospheric Environment, 36(3), 403–410. https://doi.org/https://doi.org/10.1016/S1352-2310(01)00508-8

Husham, H. M. (2019). Improve gasoline octane number and studying reid vapor pressure effect and calorific value by using environmental additives. International Journal of Mechanical and Production Engineering Research and Development, 9(5), 803–812. https://doi.org/10.24247/ijmperdoct201971

Karim, A. R. (2015). Improvement of Octane Number of Naphtha Cut of Taq-Taq Crude Oil and Khormala Crude Oil Wells by Using Additives. International Journal of Scientific & Engineering Research, 6(3), 313–323.

Koehl, W. J., Benson, J. D., Burns, V. R., Gorse jr, R. A., Hochhauser, A. M., & Reuter, R. M. (1991). Effects of gasoline composition and properties on vehicle emissions: a review of prior studies-Auto/Oil air quality improvement research program. SAE Transactions, 715–747.

Kook, S., & Pickett, L. M. (2010). Effect of fuel volatility and ignition quality on combustion and soot formation at fixed premixing conditions. SAE International Journal of Engines, 2(2), 11–23.

Kuppusamy, S., Maddela, N. R., Megharaj, M., Venkateswarlu, K., Kuppusamy, S., Maddela, N. R., Megharaj, M., & Venkateswarlu, K. (2020). An overview of total petroleum hydrocarbons. Total Petroleum Hydrocarbons: Environmental Fate, Toxicity, and Remediation, 1–27.

Leveque, R., Marcusich, M., & Patriquin, G. (1994). Unleaded Racing Gasoline Components and Blends in the 110 Octane Range. SAE Technical Paper.

Martini, G., Manfredi, U., Krasenbrink, A., Stradling, R., Zemroch, P. J., Rose, K. D., Hass, H., & Maas, H. (2013). Effect of oxygenates in gasoline on fuel consumption and emissions in three Euro 4 passenger cars Contact information. JRC Scientific and Policy Reports, 1–61. https://doi.org/10.2790/1136

Mendes, G., Aleme, H. G., & Barbeira, P. J. S. (2012). Determination of octane numbers in gasoline by distillation curves and partial least squares regression. Fuel, 97, 131–136. https://doi.org/10.1016/j.fuel.2012.01.058

Mendes, G., Aleme, H. G., & Barbeira, P. J. S. (2017). Reid vapor pressure prediction of automotive gasoline using distillation curves and multivariate calibration. Fuel, 187, 167–172.

Moro, M. K., de Castro, E. V. R., Romão, W., & Filgueiras, P. R. (2023). Data fusion applied in near and mid infrared spectroscopy for crude oil classification. Fuel, 340, 127580.

Oliveira, F. C. C., de Souza, A. T. P. C., Dias, J. A., Dias, S. C. L., & Rubim, J. C. (2004). A escolha da faixa espectral no uso combinado de métodos espectroscópicos e quimiométricos. Química Nova, 27, 218–225.

Oseev, A., Zubtsov, M., & Lucklum, R. (2013). Gasoline properties determination with phononic crystal cavity sensor. Sensors and Actuators B: Chemical, 189, 208–212.

Pasadakis, N., Gaganis, V., & Foteinopoulos, C. (2006). Octane number prediction for gasoline blends. Fuel Processing Technology, 87(6), 505–509.

Pulkrabek, W. W. (n.d.). Engineering fundamentals of the internal combustion engine. . 1st ed. Upper Saddle River: Prentice Hall; 1997.

Pumphrey, J. A., Brand, J. I., & Scheller, W. A. (2000). Vapour pressure measurements and predictions for alcohol–gasoline blends. Fuel, 79(11), 1405–1411. https://doi.org/https://doi.org/10.1016/S0016-2361(99)00284-7

Reese, E., & Kimbrough, R. D. (1993). Acute toxicity of gasoline and some additives. Environmental Health Perspectives, 101(suppl 6), 115–131.

Rodríguez-Fernández, J., Ramos, Á., Barba, J., Cárdenas, D., & Delgado, J. (2020). Improving fuel economy and engine performance through gasoline fuel octane rating. Energies, 13(13), 1–14. https://doi.org/10.3390/en13133499

Santos, R. N. G., Lima, E. R. A., & Paredes, M. L. L. (2021). ASTM D86 distillation curve : Experimental analysis and premises for literature modeling. Fuel, 284(February 2020), 118958. https://doi.org/10.1016/j.fuel.2020.118958

Siu, T. T., Anthony, D. W., & Kjell, U. (2005). Detailed Hydrocarbon Analysis of Gasoline by GC-MS. Journal of Separation Science, 17(6), 469–475.

Spieksma, W. (1998). Prediction of ASTM Method D86 Distillation of Gasolines and Naphthas according to the Fugacity-Filmmodel from Gas Chromatographic Detailed Hydocarbon Analysis. 36(September), 467–475.

Stauffer, E., Dolan, J. A., & Newman, R. (2008). CHAPTER 4 - Chemistry and Physics of Fire and Liquid Fuels (E. Stauffer, J. A. Dolan, & R. B. T.-F. D. A. Newman (Eds.); pp. 85–129). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012663971-1.50008-7

Stewart, M., & Arnold, K. (2009). Chapter 2 - Crude Stabilization. In M. Stewart & K. Arnold (Eds.), Emulsions and Oil Treating Equipment (pp. 81–106). Gulf Professional Publishing. https://doi.org/https://doi.org/10.1016/B978-0-7506-8970-0.00002-5

The focus on aromatics in automotive fuels specifications. (2002). CONCAWE Review, 11(2), 10–13.

Udo, G. J., Awaka-Ama, J. J., Uwanta, E. J., Ekwere, I. O., & Chibueze, I. R. (2020). Comparative Analyses of Physicochemical Properties of Artisanal Refined Gasoline and Regular Automotive Gasoline. Frontiers in Chemistry, 8(October), 2–8. https://doi.org/10.3389/fchem.2020.00753

Verma, D. K., & Des Tombe, K. (2002). Benzene in gasoline and crude oil: Occupational and environmental implications. American Industrial Hygiene Association Journal, 63(2), 225–230. https://doi.org/10.1080/15428110208984708

Viskup, R. (2020). Diesel and gasoline engines. IntechOpen.

Wormsbecher, R. F., Weatherbee, G. D., Kim, G., & Dougan, T. J. (1993). Emerging technology for the reduction of sulfur in FCC fuels.

Yao, C., Yang, X., Roy Raine, R., Cheng, C., Tian, Z., & Li, Y. (2009). The effects of MTBE/ethanol additives on toxic species concentration in gasoline flame. Energy & Fuels, 23(7), 3543–3548.

Yitao, S., Shuai, S., Jianxin, W., & Jianhua, X. (2009). Optimization of gasoline hydrocarbon compositions for reducing exhaust emissions. Journal of Environmental Sciences, 21(9), 1208–1213.

Zervas, E., Montagne, X., & Lahaye, J. (2002). Emission of alcohols and carbonyl compounds from a spark ignition engine. Influence of fuel and air/fuel equivalence ratio. Environmental Science & Technology, 36(11), 2414–2421.

Zhang, X., Zhang, S., Zhao, Y., Liu, J., Zhang, S., Wen, M., & Liu, H. (2023). Effects of different additives on physicochemical properties of gasoline and vehicle performance. Fuel Processing Technology, 242, 107668.

Downloads

Published

2024-02-28

How to Cite

Bamerni, F. M. (2024). A STUDY OF THE RELATIONSHIP BETWEEN THE OCTANE NUMBER AND THE CHEMICAL COMPOSITION OF REGULAR, MIDGRADE, AND PREMIUM GASOLINE. Science Journal of University of Zakho, 12(1), 75–80. https://doi.org/10.25271/sjuoz.2024.12.1.1235

Issue

Section

Science Journal of University of Zakho