ELECTRICAL, OPTICAL, AND CHEMICAL PROPERTIES OF GRAPHENE THIN FILMS FABRICATED BY VACUUM FILTRATION TECHNIQUE

Authors

  • Shivan H. Haji Department of Physics, College of Science, University of Duhok, Duhok, Kurdistan Region of Iraq
  • Faris A. Kochary Department of Physics, College of Science, University of Duhok, Duhok, Kurdistan Region of Iraq
  • Sabah M. Ahmed Department of Physics, College of Science, University of Duhok, Duhok, Kurdistan Region of Iraq

DOI:

https://doi.org/10.25271/sjuoz.2024.12.1.1198

Keywords:

Graphene Thin Film, Vacuum Filtration, IPA-assisted Direct Transfer, Electrical Resistivity, Optical Transparency.

Abstract

There has been considerable interest in graphene as a transparent electrode material because of its extraordinary features, such as high optical transmittance, high electrical conductivity, excellent thermal conductivity, exceptional mechanical strength, and remarkable electrochemical capacity. In addition, transparent conductors’ graphene thin films have been considered a promising candidate to replace currently utilized indium tin oxide films, which are unlikely to meet future demands because of their rising cost. In this study, a vacuum filtration process along with isopropyl alcohol (IPA)-assisted with direct transfer (IDT) technique is used to prepare wide-area highly conductive graphene thin films on different substrates including (glass, and PET). The graphene thin films' optical, structural, and electrical properties are studied. The graphene sheets are deposited homogeneously on the substrate, and the distribution of small graphene sheets is observed in SEM images. XPS analysis revealed that the amount of oxygen in graphene decreases significantly with annealing at 500°C and treated with HNO3. Furthermore, the graphene transparent conductive films prepared by the adjusted vacuum filtration method show low sheet resistances of 12.2, 1.41, 1.18, and 0.8 kΩ/sq with transmittances of 81%, 70%, 64.3%, and 46.4% respectively after being annealing at 500°C and treated with HNO3.

References

Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., & Song, Y. Il. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574–578.

Baptista-Pires, L., Mayorga-Martínez, C. C., Medina-Sánchez, M., Montón, H., & Merkoçi, A. (2016). Water activated graphene oxide transfer using wax printed membranes for fast patterning of a touch sensitive device. ACS Nano, 10(1), 853–860.

Cai, C., Jia, F., Li, A., Huang, F., Xu, Z., Qiu, L., Chen, Y., Fei, G., & Wang, M. (2016). Crackless transfer of large-area graphene films for superior-performance transparent electrodes. Carbon, 98, 457–462.

Chen, M.-L., Park, C.-Y., Choi, J.-G., & Oh, W.-C. (2011). Synthesis and characterization of metal (Pt, Pd and Fe)-graphene composites. Journal of the Korean Ceramic Society, 48(2), 147–151.

De, S., Higgins, T. M., Lyons, P. E., Doherty, E. M., Nirmalraj, P. N., Blau, W. J., Boland, J. J., & Coleman, J. N. (2009). Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano, 3(7), 1767–1774.

Eda, G., Fanchini, G., & Chhowalla, M. (2008a). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3(5), 270–274.

Eda, G., Fanchini, G., & Chhowalla, M. (2008b). Metal-semiconductor contact in organic thin film transistors. Nat. Nanotechnol., 83, 270–274.

Eda, G., Lin, Y.-Y., Miller, S., Chen, C.-W., Su, W.-F., & Chhowalla, M. (2008). Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters, 92(23).

Gutiérrez-Cruz, A., Ruiz-Hernández, A. R., Vega-Clemente, J. F., Luna-Gazcón, D. G., & Campos-Delgado, J. (2022). A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide. Journal of Materials Science, 57(31), 14543–14578.

Han, S., Zhou, Y., Wang, C., He, L., Zhang, W., & Roy, V. A. L. (2013). Layer‐by‐layer‐assembled reduced graphene oxide/gold nanoparticle hybrid double‐floating‐gate structure for low‐voltage flexible flash memory. Advanced Materials, 25(6), 872–877.

Hwangbo, Y., Lee, C.-K., Kim, S.-M., Kim, J.-H., Kim, K.-S., Jang, B., Lee, H.-J., Lee, S.-K., Kim, S.-S., & Ahn, J.-H. (2014). Fracture characteristics of monolayer CVD-graphene. Scientific Reports, 4(1), 4439.

Ito, J., Nakamura, J., & Natori, A. (2008). Semiconducting nature of the oxygen-adsorbed graphene sheet. Journal of Applied Physics, 103(11).

Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y. H., & Lee, T. (2012). The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 23(11), 112001.

Kadhim, K. R., & Mohammed, R. Y. (2022). Effect of Annealing Time on Structure, Morphology, and Optical Properties of Nanostructured CdO Thin Films Prepared by CBD Technique. Crystals, 12(9), 1315.

Kasry, A., Kuroda, M. A., Martyna, G. J., Tulevski, G. S., & Bol, A. A. (2010). Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano, 4(7), 3839–3844.

Kholmanov, I. N., Magnuson, C. W., Aliev, A. E., Li, H., Zhang, B., Suk, J. W., Zhang, L. L., Peng, E., Mousavi, S. H., & Khanikaev, A. B. (2012). Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Letters, 12(11), 5679–5683.

Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T.-Q., Dante, M., & Heeger, A. J. (2007). Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 317(5835), 222–225.

Kumar, A., & Zhou, C. (2010). The race to replace tin-doped indium oxide: which material will win? ACS Nano, 4(1), 11–14.

Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388.

Li, C., Xu, Y.-T., Zhao, B., Jiang, L., Chen, S.-G., Xu, J.-B., Fu, X.-Z., Sun, R., & Wong, C.-P. (2016). Flexible graphene electrothermal films made from electrochemically exfoliated graphite. Journal of Materials Science, 51, 1043–1051.

Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., & Chen, Y. (2009). Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials, 19(14), 2297–2302.

Liang, X., Sperling, B. A., Calizo, I., Cheng, G., Hacker, C. A., Zhang, Q., Obeng, Y., Yan, K., Peng, H., & Li, Q. (2011). Toward clean and crackless transfer of graphene. ACS Nano, 5(11), 9144–9153.

Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308.

Olabi, A. G., Abdelkareem, M. A., Wilberforce, T., & Sayed, E. T. (2021). Application of graphene in energy storage device–A review. Renewable and Sustainable Energy Reviews, 135, 110026.

Parvez, K., Li, R., Puniredd, S. R., Hernandez, Y., Hinkel, F., Wang, S., Feng, X., & Mullen, K. (2013). Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 7(4), 3598–3606.

Pumera, M. (2010). Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 39(11), 4146–4157.

Rafiee, M. A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z., & Koratkar, N. (2010). Fracture and fatigue in graphene nanocomposites. Small, 6(2), 179–183.

Shi, H., Wang, C., Sun, Z., Zhou, Y., Jin, K., & Yang, G. (2015). Transparent conductive reduced graphene oxide thin films produced by spray coating. Sci. China-Phys. Mech. Astron, 58, 14202–14206.

Siburian, R., Simanjuntak, C., Supeno, M., Lumbanraja, S., & Sihotang, H. (2018). New route to synthesize of graphene nano sheets.

Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7(11), 845–854.

Southard, A., Sangwan, V., Cheng, J., Williams, E. D., & Fuhrer, M. S. (2009). Solution-processed single walled carbon nanotube electrodes for organic thin-film transistors. Organic Electronics, 10(8), 1556–1561. https://doi.org/10.1016/j.orgel.2009.09.001

Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A. N., & Li, L.-J. (2011). High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 5(3), 2332–2339.

Vasanthi, V., Logu, T., Ramakrishnan, V., Anitha, K., & Sethuraman, K. (2020). Study of electrical conductivity and photoelectric response of liquid phase exfoliated graphene thin film prepared via spray pyrolysis route. Carbon Letters, 30, 417–423.

Wang, X., Xiong, Z., Liu, Z., & Zhang, T. (2015). Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Advanced Materials, 27(8), 1370–1375.

Wang, X., Zhi, L., Tsao, N., Tomović, Ž., Li, J., & Müllen, K. (2008). Transparent carbon films as electrodes in organic solar cells. Angewandte Chemie International Edition, 47(16), 2990–2992.

Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4(8), 505–509.

Xia, Z., Leonardi, F., Gobbi, M., Liu, Y., Bellani, V., Liscio, A., Kovtun, A., Li, R., Feng, X., & Orgiu, E. (2016). Electrochemical functionalization of graphene at the nanoscale with self-assembling diazonium salts. ACS Nano, 10(7), 7125–7134.

Xia, Z. Y., Giambastiani, G., Christodoulou, C., Nardi, M. V, Koch, N., Treossi, E., Bellani, V., Pezzini, S., Corticelli, F., & Morandi, V. (2014). Synergic exfoliation of graphene with organic molecules and inorganic ions for the electrochemical production of flexible electrodes. ChemPlusChem, 79(3), 439–446.

Xueshen, W., Jinjin, L., Qing, Z., Yuan, Z., & Mengke, Z. (2013). Thermal annealing of exfoliated graphene. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/101765

Yang, S., Lohe, M. R., Müllen, K., & Feng, X. (2016). New‐generation graphene from electrochemical approaches: production and applications. Advanced Materials, 28(29), 6213–6221.

Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P. E., Liu, Z., Gong, Y., Zhang, J., & Zhang, X. (2014). Fracture toughness of graphene. Nature Communications, 5(1), 3782.

Zhang, W., Chai, C., Fan, Q., Song, Y., & Yang, Y. (2020). PBCF‐Graphene: A 2D Sp2 Hybridized Honeycomb Carbon Allotrope with a Direct Band Gap. ChemNanoMat, 6(1), 139–147.

Zheng, Q. Bin, Gudarzi, M. M., Wang, S. J., Geng, Y., Li, Z., & Kim, J.-K. (2011). Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 49(9), 2905–2916.

Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide-based transparent conductive films. Progress in Materials Science, 64, 200–247.

Downloads

Published

2024-01-15

How to Cite

Haji, S. H., Kochary, F. A., & Ahmed, S. M. (2024). ELECTRICAL, OPTICAL, AND CHEMICAL PROPERTIES OF GRAPHENE THIN FILMS FABRICATED BY VACUUM FILTRATION TECHNIQUE. Science Journal of University of Zakho, 12(1), 14–21. https://doi.org/10.25271/sjuoz.2024.12.1.1198

Issue

Section

Science Journal of University of Zakho