The Effects Of N-GaAs Substrate Orientations on The Electrical Performance of PANI/N-GaAs Hybrid Solar Cell Devices

Authors

  • Haveen A. Mustafa Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq
  • Dler A. Jameel Dept. of General Science, College of Basic Education, University of Zakho, Kurdistan Region-Iraq
  • Hussien I. Salim Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq
  • Sabah M. Ahmed Dept. of Physics, College of Science, University of Duhok, Kurdistan Region-Iraq

DOI:

https://doi.org/10.25271/sjuoz.2020.8.4.773

Keywords:

(100) GaAs, (110) GaAs, (311)B GaAs, PANI, IV curve, Hybrid device

Abstract

This paper reports the fabrication and electrical characterization of hybrid organic-inorganic solar cell based on the deposition of polyaniline (PANI) on n-type GaAs substrate with three different crystal orientations namely Au/PANI/(100) n-GaAs/(Ni-Au), Au/PANI/(110) n-GaAs/(Ni-Au), and Au/PANI/(311)B n-GaAs/(Ni-Au) using spin coating technique. The effect of crystallographic orientation of n-GaAs on solar cell efficiency of the hybrid solar cell devices has been studied utilizing current density-voltage (J-V) measurements under illumination conditions. Additionally, the influence of planes of n-GaAs on the diode parameters of the same devices has been investigated by employing current-voltage (I-V) characteristics in the dark conditions at room temperature. The experimental observations showed that the best performance was obtained for solar cells fabricated with the structure of Au/PANI/(311)B n-GaAs/(Ni-Au). The open-circuit voltage (Voc), short circuit current density (Jsc), and solar cell efficiency () of the same device were shown the values of 342 mV, 0.294 mAcm-2, 0.0196%, respectively under illuminated condition. All the solar cell characteristics were carried out under standard AM 1.5 at room temperature. Also, diode parameters of PANI/(311)B n-GaAs heterostructures were calculated from the dark I-V measurements revealed the lower reverse saturation current (Io) of 3.0×10-9A, higher barrier height () of 0.79 eV and lower ideality factor (n) of 3.16.

Downloads

Download data is not yet available.

Author Biographies

Haveen A. Mustafa, Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq

Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq (havin1990@yahoo.com)

Dler A. Jameel, Dept. of General Science, College of Basic Education, University of Zakho, Kurdistan Region-Iraq

Dept. of General Science, College of Basic Education, University of Zakho, Kurdistan Region, Iraq –(dler.jameel@uoz.edu.krd

Hussien I. Salim, Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq

Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq - (hussein.salim@uoz.edu.krd)

Sabah M. Ahmed, Dept. of Physics, College of Science, University of Duhok, Kurdistan Region-Iraq

Dept. of Physics, College of Science, University of Duhok, Kurdistan Region, Iraq (sabma62@uod.ac)

References

Al Saqri, N. A., Mondal, A., Felix, J. F., Gobato, Y. G., Gordo, V. O., Albalawi, H., … Henini, M. (2017). Investigation of defects in indium doped TiO2thin films using electrical and optical techniques. Journal of Alloys and Compounds, 698, 883–891. https://doi.org/10.1016/j.jallcom.2016.12.294
Coskun, C., Biber, M., & Efeoglu, H. (2003). Temperature dependence of current-voltage characteristics of Sn/p-GaTe Schottky diodes. Applied Surface Science, 211(1–4), 360–366. https://doi.org/10.1016/S0169-4332(03)00267-8
Felix, J. F., de Vasconcelos, E. A., de Silva Jr, E. F., & de Azevedo, W. M. (2011). Fabrication and electrical characterization of polyaniline / silicon carbide heterojunctions. J. Phys. D: Appl. Phys., 44, 205101. https://doi.org/10.1088/0022-3727/44/20/205101
Halliday, D. P., Gray, J. W., & Adams, P. N. (1999). Electrical and optical properties of a polymer semiconductor interface. Synthetic Metals, 102, 877–878.
Henini, M., Polimeni, A., Patanè, A., Eaves, L., Main, P. C., & Hill, G. (1999). Effect of the substrate orientation on the self-organization of (InGa)As/GaAs quantum dots. Microelectronics Journal, 30(4), 319–322. https://doi.org/10.1016/S0026-2692(98)00129-3
Jameel, D.A., Aziz, M., Felix, J. F., Al Saqri, N., Taylor, D., Albalawi, H., … Henini, M. (2016). Electrical performance of conducting polymer (SPAN) grown on GaAs with different substrate orientations. Applied Surface Science, 387. https://doi.org/10.1016/j.apsusc.2016.06.097
Jameel, D.A., Felix, J. F., Aziz, M., Al Saqri, N., Taylor, D., De Azevedo, W. M., … Henini, M. (2015). High-performance organic/inorganic hybrid heterojunction based on Gallium Arsenide (GaAs) substrates and a conjugated polymer. Applied Surface Science, 357. https://doi.org/10.1016/j.apsusc.2015.09.209
Jameel, Dler Adil, Marroquin, J. F. R., Aziz, M., Al Saqri, N. A., Jum’h, I., Telfah, A., … Felix, J. F. (2020). Investigation of the effects of GaAs substrate orientations on the electrical properties of sulfonated polyaniline based heterostructures. Applied Surface Science. https://doi.org/10.1016/j.apsusc.2019.144315
Li, Y., & Niewczas, M. (2007). Strain relaxation in (100) and (311) GaP/GaAs thin filGaPms. Journal of Applied Physics, 101(6). https://doi.org/10.1063/1.2709615
Marinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373–389. https://doi.org/10.1016/j.jcis.2016.11.021
Patanè, A., Polimeni, A., Henini, M., Eaves, L., Main, P. C., & Hill, G. (1999). In0. 5Ga0. 5As quantum dot lasers grown on (1 0 0) and (3 1 1) B GaAs substrates. Journal of Crystal Growth, 201, 1139–1142. https://doi.org/10.1016/S0022-0248(99)00003-2
Rebaoui, Z., Bachir Bouiajra, W., Abboun Abid, M., Saidane, A., Jammel, D., Henini, M., & Felix, J. F. (2017). SiC polytypes and doping nature effects on electrical properties of ZnO-SiC Schottky diodes. Microelectronic Engineering, 171. https://doi.org/10.1016/j.mee.2017.01.010
Salehi, A., Naderi, P., Boroumand, F. A., & Dunbar, A. (2018). Fabrication and Characterization of Hybrid Photovoltaic Devices Based On N-Type GaAs and Polymer Composites. Proceedings of the 2nd International Conference of Energy Harvesting, Storage, and Transfer (EHST’18), (116), 1–10. https://doi.org/10.11159/ehst18.116
Salehi, A., Nikfarjam, A., & Kalantari, D. J. (2006). Highly Sensitive Humidity Sensor Using Pd/Porous GaAs Schottky Contact. IEEE SENSORS JOURNAL, 6, 1415–1421. https://doi.org/10.1109/JSEN.2006.881371
Sze, S. M. (2002). Semiconductor Devices: Physics and Technology (2nd ed.; S. M. Sze, ed.). New York, NY, USA: Wiley.
Wang, L., Li, M., Xiong, M., & Zhao, L. (2009). Effect of interfacial bonds on the morphology of InAs QDs grown on GaAs (311) B and (100) substrates. Nanoscale Research Letters, 4(7), 689–693. https://doi.org/10.1007/s11671-009-9304-z
Yan, L., & You, W. (2013). Real Function of Semiconducting Polymer in GaAs / Polymer Planar. American Chemical Society Nano, 7, 6619–6626. https://doi.org/10.1021/nn306047q
Zaidan, K. M., Hussein, H. F., Talib, R. A., & Hassan, A. K. (2011). Synthesis and characterization of (PAni/n-Si)solar cell. Energy Procedia, 6, 85–91. https://doi.org/10.1016/j.egypro.2011.05.010

Downloads

Published

2020-12-30

How to Cite

Mustafa, H. A., Jameel, D. A., Salim, H. I., & Ahmed, S. M. (2020). The Effects Of N-GaAs Substrate Orientations on The Electrical Performance of PANI/N-GaAs Hybrid Solar Cell Devices. Science Journal of University of Zakho, 8(4), 149–153. https://doi.org/10.25271/sjuoz.2020.8.4.773

Issue

Section

Science Journal of University of Zakho