The Effects Of N-GaAs Substrate Orientations on The Electrical Performance of PANI/N-GaAs Hybrid Solar Cell Devices

Authors

  • Haveen A. Mustafa Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq
  • Dler A. Jameel Dept. of General Science, College of Basic Education, University of Zakho, Kurdistan Region-Iraq
  • Hussien I. Salim Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq
  • Sabah M. Ahmed Dept. of Physics, College of Science, University of Duhok, Kurdistan Region-Iraq

DOI:

https://doi.org/10.25271/sjuoz.2020.8.4.773

Keywords:

(100) GaAs, (110) GaAs, (311)B GaAs, PANI, IV curve, Hybrid device

Abstract

This paper reports the fabrication and electrical characterization of hybrid organic-inorganic solar cell based on the deposition of polyaniline (PANI) on n-type GaAs substrate with three different crystal orientations namely Au/PANI/(100) n-GaAs/(Ni-Au), Au/PANI/(110) n-GaAs/(Ni-Au), and Au/PANI/(311)B n-GaAs/(Ni-Au) using spin coating technique. The effect of crystallographic orientation of n-GaAs on solar cell efficiency of the hybrid solar cell devices has been studied utilizing current density-voltage (J-V) measurements under illumination conditions. Additionally, the influence of planes of n-GaAs on the diode parameters of the same devices has been investigated by employing current-voltage (I-V) characteristics in the dark conditions at room temperature. The experimental observations showed that the best performance was obtained for solar cells fabricated with the structure of Au/PANI/(311)B n-GaAs/(Ni-Au). The open-circuit voltage (Voc), short circuit current density (Jsc), and solar cell efficiency () of the same device were shown the values of 342 mV, 0.294 mAcm-2, 0.0196%, respectively under illuminated condition. All the solar cell characteristics were carried out under standard AM 1.5 at room temperature. Also, diode parameters of PANI/(311)B n-GaAs heterostructures were calculated from the dark I-V measurements revealed the lower reverse saturation current (Io) of 3.0×10-9A, higher barrier height () of 0.79 eV and lower ideality factor (n) of 3.16.

Author Biographies

Haveen A. Mustafa, Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq

Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq (havin1990@yahoo.com)

Dler A. Jameel, Dept. of General Science, College of Basic Education, University of Zakho, Kurdistan Region-Iraq

Dept. of General Science, College of Basic Education, University of Zakho, Kurdistan Region, Iraq –(dler.jameel@uoz.edu.krd

Hussien I. Salim, Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq

Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq - (hussein.salim@uoz.edu.krd)

Sabah M. Ahmed, Dept. of Physics, College of Science, University of Duhok, Kurdistan Region-Iraq

Dept. of Physics, College of Science, University of Duhok, Kurdistan Region, Iraq (sabma62@uod.ac)

References

Al Saqri, N. A., Mondal, A., Felix, J. F., Gobato, Y. G., Gordo, V. O., Albalawi, H., … Henini, M. (2017). Investigation of defects in indium doped TiO2thin films using electrical and optical techniques. Journal of Alloys and Compounds, 698, 883–891. https://doi.org/10.1016/j.jallcom.2016.12.294
Coskun, C., Biber, M., & Efeoglu, H. (2003). Temperature dependence of current-voltage characteristics of Sn/p-GaTe Schottky diodes. Applied Surface Science, 211(1–4), 360–366. https://doi.org/10.1016/S0169-4332(03)00267-8
Felix, J. F., de Vasconcelos, E. A., de Silva Jr, E. F., & de Azevedo, W. M. (2011). Fabrication and electrical characterization of polyaniline / silicon carbide heterojunctions. J. Phys. D: Appl. Phys., 44, 205101. https://doi.org/10.1088/0022-3727/44/20/205101
Halliday, D. P., Gray, J. W., & Adams, P. N. (1999). Electrical and optical properties of a polymer semiconductor interface. Synthetic Metals, 102, 877–878.
Henini, M., Polimeni, A., Patanè, A., Eaves, L., Main, P. C., & Hill, G. (1999). Effect of the substrate orientation on the self-organization of (InGa)As/GaAs quantum dots. Microelectronics Journal, 30(4), 319–322. https://doi.org/10.1016/S0026-2692(98)00129-3
Jameel, D.A., Aziz, M., Felix, J. F., Al Saqri, N., Taylor, D., Albalawi, H., … Henini, M. (2016). Electrical performance of conducting polymer (SPAN) grown on GaAs with different substrate orientations. Applied Surface Science, 387. https://doi.org/10.1016/j.apsusc.2016.06.097
Jameel, D.A., Felix, J. F., Aziz, M., Al Saqri, N., Taylor, D., De Azevedo, W. M., … Henini, M. (2015). High-performance organic/inorganic hybrid heterojunction based on Gallium Arsenide (GaAs) substrates and a conjugated polymer. Applied Surface Science, 357. https://doi.org/10.1016/j.apsusc.2015.09.209
Jameel, Dler Adil, Marroquin, J. F. R., Aziz, M., Al Saqri, N. A., Jum’h, I., Telfah, A., … Felix, J. F. (2020). Investigation of the effects of GaAs substrate orientations on the electrical properties of sulfonated polyaniline based heterostructures. Applied Surface Science. https://doi.org/10.1016/j.apsusc.2019.144315
Li, Y., & Niewczas, M. (2007). Strain relaxation in (100) and (311) GaP/GaAs thin filGaPms. Journal of Applied Physics, 101(6). https://doi.org/10.1063/1.2709615
Marinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373–389. https://doi.org/10.1016/j.jcis.2016.11.021
Patanè, A., Polimeni, A., Henini, M., Eaves, L., Main, P. C., & Hill, G. (1999). In0. 5Ga0. 5As quantum dot lasers grown on (1 0 0) and (3 1 1) B GaAs substrates. Journal of Crystal Growth, 201, 1139–1142. https://doi.org/10.1016/S0022-0248(99)00003-2
Rebaoui, Z., Bachir Bouiajra, W., Abboun Abid, M., Saidane, A., Jammel, D., Henini, M., & Felix, J. F. (2017). SiC polytypes and doping nature effects on electrical properties of ZnO-SiC Schottky diodes. Microelectronic Engineering, 171. https://doi.org/10.1016/j.mee.2017.01.010
Salehi, A., Naderi, P., Boroumand, F. A., & Dunbar, A. (2018). Fabrication and Characterization of Hybrid Photovoltaic Devices Based On N-Type GaAs and Polymer Composites. Proceedings of the 2nd International Conference of Energy Harvesting, Storage, and Transfer (EHST’18), (116), 1–10. https://doi.org/10.11159/ehst18.116
Salehi, A., Nikfarjam, A., & Kalantari, D. J. (2006). Highly Sensitive Humidity Sensor Using Pd/Porous GaAs Schottky Contact. IEEE SENSORS JOURNAL, 6, 1415–1421. https://doi.org/10.1109/JSEN.2006.881371
Sze, S. M. (2002). Semiconductor Devices: Physics and Technology (2nd ed.; S. M. Sze, ed.). New York, NY, USA: Wiley.
Wang, L., Li, M., Xiong, M., & Zhao, L. (2009). Effect of interfacial bonds on the morphology of InAs QDs grown on GaAs (311) B and (100) substrates. Nanoscale Research Letters, 4(7), 689–693. https://doi.org/10.1007/s11671-009-9304-z
Yan, L., & You, W. (2013). Real Function of Semiconducting Polymer in GaAs / Polymer Planar. American Chemical Society Nano, 7, 6619–6626. https://doi.org/10.1021/nn306047q
Zaidan, K. M., Hussein, H. F., Talib, R. A., & Hassan, A. K. (2011). Synthesis and characterization of (PAni/n-Si)solar cell. Energy Procedia, 6, 85–91. https://doi.org/10.1016/j.egypro.2011.05.010

Downloads

Published

2020-12-30

How to Cite

Mustafa, H. A., Jameel, D. A., Salim, H. I., & Ahmed, S. M. (2020). The Effects Of N-GaAs Substrate Orientations on The Electrical Performance of PANI/N-GaAs Hybrid Solar Cell Devices. Science Journal of University of Zakho, 8(4), 149–153. https://doi.org/10.25271/sjuoz.2020.8.4.773

Issue

Section

Science Journal of University of Zakho