EFFECTS OF DIETARY PHYTASE AND ORGANIC ACIDS ON NUTRIENT UTILIZATION AND ANTIOXIDANT STATUS IN Clarias gariepinus

Asma Batool(1) , Neelam Arshad(2) , Ayesha Shahid(3) , Ali Hassan(4) , Bisma Younas(5) , Kainat Shabbir(6)
(1) 1Department of Biological and Environmental Science, Emerson University Multan, Punjab, Pakistan. ,
(2) 2Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad-38040, Punjab, Pakistan. ,
(3) 3Department of Zoology, Government College University, Lahore, Pakistan. ,
(4) 4Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan. ,
(5) 5Department of Zoology, Government College University, Faisalabad, Punjab, Pakistan.

Abstract

The present study was conducted to examine the effect of phytase and organic acids (OA) on growth parameters such as final body weight(g), weight gain (%) Specific growth rate (%/day), FCR, Survival (%), nutrient digestibility, body composition, and oxidative stress biomarkers in African catfish (Clarias gariepinus). The six dietary treatments for 60 days were designed: control (0% OA, 0 phytase), 2% OA, 4% OA, 0% OA + phytase, 2% OA + phytase, and 4% OA + phytase, each with three replicates.  The significant (p < 0.05) results were found on the inclusion of phytase and OA on growth and nutrient utilization. The highest final body weight (7.4 ± 0.3 g), weight gain (460.6 ± 31%), specific growth rate (3.3 ± 0.3%/day), and the lowest feed conversion ratio (1.5 ± 0.2) were found in the 2% OA + phytase group. Apparent digestibility coefficients for dry matter, protein, and phosphorus were maximized at 46.7 ± 1.3%, 77.2 ± 1.4%, and 48.0 ± 1.4%, respectively (p = 0.007), while fecal phosphorus significantly decreased (0.8 ± 0.04 g/kg). Vertebral phosphorus and calcium contents were enhanced significantly (p < 0.05) in the combined supplement group. Oxidative stress markers revealed lower ROS (66.5 ± 1.8), SOD (144 ± 2.6 U/mL), and MDA (5.25 ± 0.14 nmol/mg) levels in the 2% OA + phytase group, indicating enhanced antioxidant defense (p = 0.005). These outcomes indicate that 2 OA inclusion with phytase improves growth, nutrient digestibility, mineral retention, and antioxidant balance in C. gariepinus

Full text article

Generated from XML file

References

Adeshina, I., Akpoilih, B. U., Udom, B. F., Adeniyi, O. V., & Abdel-Tawwab, M. (2023). Interactive effects of dietary phosphorus and microbial phytase on growth performance, intestinal morphometry, and welfare of Nile tilapia (Oreochromis niloticus) fed on low-fishmeal diets. Aquaculture, 563, 738995. DOI: 10.1016/j.aquaculture.2022.738995.

Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in pharmacology, 14, 1269581. DOI: 10.3389/fphar.2023.1269581

Ahmed, B. S. (2023). Nutritional effects of dietary spirulina (Arthrospora platensis) on morphological performance, hematological profile, biochemical parameters of common carp (Cyprinus carpio L.). Egyptian Journal of Veterinary Sciences, 54(3), 515-524. DOI: 10.3389/ejvs.2023.1276981

Aluta, U. P., Aderolu, A. Z., Lawal, M. O., & Olutola, A. A. (2021). Inclusion effect of onion peel powder in the diet of African catfish, Clarias gariepinus: Growth, blood chemistry, hepatic antioxidant enzymes activities and SOD mRNA responses. Scientific African, 12, e00780. DOI: 10.1016/j.sciaf. 2021.e00780

Antache, A., Simionov, I. A., Petrea, Ș. M., Nica, A., Georgescu, P. L., Oprică, L., & Poroch, V. (2025). Insect–Antioxidants Symbiotic Nexus—Pathway for Sustainable and Resilient Aquaculture: A Case Study for Evaluating Koi Carp Growth and Oxidative Stress Status. Antioxidants, 14(4), 371. DOI: 10.3390/antiox14040371

Bello, A., Dersjant-Li, Y., van Eerden, E., Kwakernaak, C., & Marchal, L. (2022). Supplementation of an all-plant-based inorganic phosphate-free diet with a novel phytase maintained tibia ash and performance in broilers under a commercial production setting. Journal of Applied Poultry Research, 31(2), 100253. DOI: 10.1016/j.japr.2022.100253

Besson, M., Komen, H., Aubin, J., De Boer, I. J. M., Poelman, M., Quillet, E., & Van Arendonk, J. A. M. (2014). Economic values of growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias gariepinus). Journal of animal science, 92(12), 5394-5405. DOI: 10.2527/jas.2014-8266

Bianucci, E., Furlan, A. L., Llugany, M., Poschenrieder, C., & Tolrà, R. (2025). Insights into the physiological and biochemical responses of peanut plants under combined arsenic and flooding stress. Plant Physiology and Biochemistry, 110266. DOI: 10.1016/j.plaphy.2025.110266

Chen, X., Ma, T., Xie, F., & Tang, Z. (2025). Phosphate source apportionment across the agriculture-urban gradient in Asia's longest river: Combining machine learning and multi-isotope techniques. Agricultural Water Management, 320, 109874. DOI: 10.1016/j.agwat.2025.109874

de Sire, A., Marotta, N., Marinaro, C., Curci, C., Invernizzi, M., & Ammendolia, A. (2021). Role of physical exercise and nutraceuticals in modulating molecular pathways of osteoarthritis. International journal of molecular sciences, 22(11), 5722. DOI: 10.3390/ijms22115722

Doherty, V. F., Ogunkuade, O. O., & Kanife, U. C. (2010). Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in some selected fishes in Lagos, Nigeria. Am Eurasian J Agric Environ Sci, 7(3), 359-365. DOI: 10.1012/j.agwat.2010.105874

Elaigwu, A. M., Auta, J., & Onimisi, H. U. (2024). Effect of Phytase-Supplemented Diets on Growth Indices, Nutrient Digestibility and Utilisation, Carcass Composition, and Sustainability of African Catfish (Clarias gariepinus). Aquatic Science and Fish Resources (ASFR), 5(1), 111-121. DOI: 10.21608/asfr.2024.312521.1066

El-Dakar, A. Y., Shalaby, S. M., Mohamed, B. K., & Abdel-Aziz, M. F. A. (2022). Improving the growth, feed efficiency and hematological indicators of Nile tilapia fingerlings Oreochromis niloticus using dietary lactic acid supplementation with different feeding routines. Mediterranean Aquaculture Journal, 9(1), 25-37. DOI: 10.21608/maj.2022.156031.1012

Fazal, R. M., Fatima, A., Al Sulivany, B. S., Hussain, R., Hassan, A., Shahid, A., & Owais, M. (2025). Enhancing growth performance, antioxidant defense, and immune response in striped catfish (Pangasius hypophthalmus) through dietary supplementation with aloe vera: a sustainable aquaculture approach. Science Journal of University of Zakho, 13(4), 510-518. DOI: 10.25271/sjuoz.2025.13.4.1691

Flieger, J., Flieger, W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials, 14(15), 4135. DOI: 10.3390/ma14154135

Froehlich, H. E., Montgomery, J. C., Williams, D. R., O'Hara, C., Kuempel, C. D., & Halpern, B. S. (2023). Biological life‐history and farming scenarios of marine aquaculture to help reduce wild marine fishing pressure. Fish and Fisheries, 24(6), 1034-1047. DOI: 10.1111/faf.12767

Gao, F., Zhao, Y., Shi, X., Qiao, D., Pei, C., & Kong, X. (2024). Signalling regulation of reactive oxygen species in fish inflammation. Reviews in Aquaculture, 16(3), 1266-1285. DOI: 10.1111/raq.12815

Grujović, M. Ž., Semedo-Lemsaddek, T., & Marković, K. G. (2025). Application of Probiotics in Foods: A Comprehensive Review of Benefits, Challenges, and Future Perspectives. Foods, 14(17), 3088. DOI: 10.3390/foods14173088

Hussein, E. E., Habiba, M. M., Ashry, A. M., Al-Zayat, A. M., Teiba, I. I., Shehata, A. I., & El Basuini, M. F. (2023). Effects of dietary supplementation with organic acids mixture on growth, feed efficiency, hematobiochemical parameters, immunity, and intestinal microbiota of Gilthead seabream (Sparus aurata) juveniles. Aquaculture Reports, 33, 101846. DOI: 10.1016/j.aqrep.2023.101846

Iqbal, M., Afzal, M., Yaqub, A., Anjum, K. M., & Tayyab, K. (2021). Combined effects of citric acid and phytase supplementation on growth performance, nutrient digestibility and body composition of labeo rohita fingerlings. Aquaculture Studies, 22(1). DOI: 10.4194/AQUAST656

Langi, S., Maulu, S., Hasimuna, O. J., Kaleinasho Kapula, V., & Tjipute, M. (2024). Nutritional requirements and effect of culture conditions on the performance of the African catfish (Clarias gariepinus): a review. Cogent Food & Agriculture, 10(1), 2302642. DOI: 10.1080/23311932.2024.2302642

Liang, Q., Yuan, M., Xu, L., Lio, E., Zhang, F., Mou, H., & Secundo, F. (2022). Application of enzymes as a feed additive in aquaculture. Marine Life Science & Technology, 4(2), 208-221. DOI: 10.1007/s42995-022-00133-8

Libanori, M. C. M., Santos, G. G., Pereira, S. A., Lopes, G. R., Owatari, M. S., Soligo, T. A., & Mouriño, J. L. P. (2021). Dietary supplementation with benzoic organic acid improves the growth performance and survival of Nile tilapia (Oreochromis niloticus) after challenge with Streptococcus agalactiae (Group B). Aquaculture, 545, 737204. DOI: 10.1016/j.aquaculture.2021.737204

McCleary, B. V., Sloane, N., Draga, A., & Lazewska, I. (2013). Measurement of total dietary fiber using

AOAC Method 2009.01 (AACC International Approved Method 32‐45.01): evaluation and updates. Cereal Chemistry, 90(4), 396-414. DOI: 10.1094/CCHEM-01-13-0002-R

Moradi, S., Abdollahi, M. R., Moradi, A., & Jamshidi, L. (2023). Effect of bacterial phytase on growth performance, nutrient utilization, and bone mineralization in broilers fed pelleted diets. Animals, 13(9), 1450. DOI: 10.3390/ani13091450

Naiel, M. A., Negm, S. S., Ghazanfar, S., Shukry, M., & Abdelnour, S. A. (2023). The risk assessment of high‐fat diet in farmed fish and its mitigation approaches: A review. Journal of animal physiology and animal nutrition, 107(3), 948-969. DOI: 10.1111/jpn.13777

Nassar, A. A., Gharib, A. A. E. A., Abdelgalil, S. Y., AbdAllah, H. M., & Elmowalid, G. A. (2024). Immunomodulatory, antioxidant, and growth-promoting activities of dietary fermented Moringa oleifera in Nile tilapia (Oreochromus niloticus) with in-vivo protection against Aeromonas hydrophila. BMC Veterinary Research, 20(1), 231. DOI: 10.1186/s12917-024-04045-7

Nathanailides, C., Kolygas, M., Tsoumani, M., Gouva, E., Mavraganis, T., & Karayanni, H. (2023). Addressing phosphorus waste in open flow freshwater fish farms: Challenges and solutions. Fishes, 8(9), 442. DOI: 10.3390/fishes8090442

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry, 95(2), 351-358. DOI: 10.1016/0003-2697(79)90738-3

Ondiba, R. N., Ogello, E. O., Kembenya, E., Gichana, Z., & Obiero, K. (2022). Future demand and supply of aquafeed ingredients: Outlines to commercialize non-conventional protein ingredients to enhance aquaculture production for food security in sub-Saharan Africa. Aquatic Ecosystem Health & Management, 25(4), 75-84. DOI: 10.14321/aehm.025.04.75

Owais, m., riaz-ud-din, q. U. R. E. S. H. I., irfan, m., jamil, s., yasin, r., ramzan, s., & fazal, r. M. (2023). Effect of Different Salinity Levels on Growth Performance, Hematological Parameters and Proximate Composition of Cyprinus Carpio. University of Sindh Journal of Animal Sciences (USJAS), 7(04), 52-60. DOI: 10.1065/10488398.2023.2046236

Pragya, Sharma, K. K., Kumar, A., Singh, D., Kumar, V., & Singh, B. (2023). Immobilized phytases: an overview of different strategies, support material, and their applications in improving food and feed nutrition. Critical Reviews in Food Science and Nutrition, 63(22), 5465-5487. DOI: 10.1080/10408398.2022.2047226

Pujol, A., Sanchis, P., Grases, F., & Masmiquel, L. (2023). Phytate intake, health and disease:“let thy food be thy medicine and medicine be thy food”. Antioxidants, 12(1), 146. DOI: 10.3390/antiox12010146

Reda, R. M., El‐Murr, A., Abd Elhakim, Y., & El‐Shahat, W. (2022). Aeromonas veronii detection in Egyptian fish farms with summer tilapia mortality outbreaks and the role of formic acid in limiting its spread. Aquaculture Research, 53(3), 940-956. DOI: 10.1111/are.15676

Rodrigues, E. J. D., Ito, P. I., Ribeiro, L. F. M., de Carvalho, P. L. P. F., Xavier, W. D. S., Guimarães, M. G., .& Barros, M. M. (2022). Phytase supplementation under commercially intensive rearing conditions: impacts on Nile Tilapia growth performance and nutrient digestibility. Animals, 13(1), 136. DOI: 10.3390/ani13010136

Sales, J., & Britz, P. J. (2001). Evaluation of different markers to determine apparent nutrient digestibility coefficients of feed ingredients for South African abalone (Haliotis midae L.). Aquaculture, 202(1-2), 113-129. DOI: 10.1016/S0044-8486(01)00531-2

Selim, S., Abdel-Megeid, N. S., Khalifa, H. K., Fakiha, K. G., Majrashi, K. A., & Hussein, E. (2022). Efficacy of various feed additives on performance, nutrient digestibility, bone quality, blood constituents, and phosphorus absorption and utilization of broiler chickens fed low phosphorus diet. Animals, 12(14), 1742. DOI: 10.3390/ani12141742

Silva, L. I. D., Pereira, M. C., Carvalho, A. M. X. D., Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture, 13(2), 462. DOI: 10.3390/agriculture13020462

Singh, S., Mondal, D., Thakur, M., Habib, M., Jan, K., Dhar, P., & Bashir, K. (2024). Emerging trends in nutraceutical research: Role of minerals. Functional Foods and Nutraceuticals: Chemistry, Health Benefits and the Way Forward, 81-112. DOI: 10.1016/j.nchbwf.2024.102627

Tabassum, S., Hussain, S. M., Ali, S., Sarker, P. K., & Al-Ghanim, K. A. (2025). Moringa oleifera seed meal as a sustainable fishmeal substitute: Growth and health implications for Cirrhinus mrigala. Aquaculture Reports, 40, 102634. DOI: 10.1016/j.aqrep.2025.102634

Yadav, N. K., Patel, A. B., Kashyap, S., Deepti, M., Savaliya, B. D., Singh, Y. R., & Sahu, A. (2025). Phytase as a functional feed additive in aquaculture: growth promotion, nutrient utilization, and environmental mitigation. Aquaculture International, 33(6), 1-31. DOI: 10.1007/s10499-025-01427-3

Zhang, Q., Walk, C. L., Cowieson, A. J., Stamatopoulos, K., Wu, J. L., & Sorbara, J. O. B. (2024). Efficacy of a novel phytase in response to low and high phytate diets using a short-term digestibility model in broiler chickens at two ages. Animal Feed Science and Technology, 307, 115832. DOI: 10.1016/j.anifeedsci.2024.115832

Authors

Asma Batool
khanasma6038@gmail.com (Primary Contact)
Neelam Arshad
Ayesha Shahid
Ali Hassan
Bisma Younas
Kainat Shabbir
Author Biography

Asma Batool

1Department of Biological and Environmental Science, Emerson University Multan, Punjab, Pakistan.

Batool, A., Arshad, N., Shahid, A., Hassan, A., Younas, B., & Shabbir, K. (2026). EFFECTS OF DIETARY PHYTASE AND ORGANIC ACIDS ON NUTRIENT UTILIZATION AND ANTIOXIDANT STATUS IN Clarias gariepinus. Science Journal of University of Zakho, 14(1), 15-21. https://doi.org/10.25271/sjuoz.2026.14.1.1825

Article Details

How to Cite

Batool, A., Arshad, N., Shahid, A., Hassan, A., Younas, B., & Shabbir, K. (2026). EFFECTS OF DIETARY PHYTASE AND ORGANIC ACIDS ON NUTRIENT UTILIZATION AND ANTIOXIDANT STATUS IN Clarias gariepinus. Science Journal of University of Zakho, 14(1), 15-21. https://doi.org/10.25271/sjuoz.2026.14.1.1825

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

No Related Submission Found