BIOSYNTHESIS AND CHARACTERIZATION OF CuO NANOPARTICLES USING DIFFERENT pH
DOI:
https://doi.org/10.25271/sjuoz.2023.11.3.1112Keywords:
Green synthesis, CuO NPs, Nanoparticles, Green synthesis, Copper Oxide, Ferulago Angulate [ Schltdl.] BOISS, Plant., Phytochemical Screening, Khabur River, Heavy Metals, ICP-OES, Chemical Characterization, Instrumental AnalysisAbstract
CuO nanoparticles are synthesized from Ferulago angulate leaf extract under different pH values. The structural, morphological, as well as optical properties of the green synthesized CuO NPs are studied. Besides, the functional groups in the Ferulago angulate stabilizer capping the copper nanoparticles were examined using FTIR spectra. The primary factor that led to the first confirmation of CuO NP production was the reaction mixture's color change. A phytochemical test revealed the presence of proteins, amino acids, carbohydrates, flavonoids, phenols, alkaloids, tannins, and saponins. FTIR spectrum shows a peak at 532.35 cm-1, this may be attributed to CuO's vibrations confirming the presence of copper oxide nanoparticles. XRD analysis shows the presence of crystalline monoclinic cupric oxide (CuO). The morphological study (FESEM) shows different morphology (different shapes and sizes) under different pH values. EDS data shows the O-richness of the prepared CuO NPs extracted from Ferulago angulate [ Schltdl.] BOISS leaf extract shows pure CuO phases. In this investigation, fabricated CuO's estimated energy band gap values were higher than those of bulk CuO. Results show Eg increment with increasing pH values.
References
Abdulqudos, A., & Abdulrahman, A. F. (2022). Biosynthesis and Characterization of ZnO Nanoparticles by using Leaf Extractionof Allium Calocephalum Wendelbow Plant. Passer Journal of Basic and Applied Sciences, 4(2), 113–126. https://doi.org/10.24271/psr.2022.343112.1136
Altikatoglu, Melda and Attar, Azade and Erci, Fatih and Cristache, Corina Marilena and Isildak, I. and others. (2017). Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity. In Fresenius Environ. Bull (Vol. 25).
Aminuzzaman, M., Kei, L. M., & Liang, W. H. (2017). Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities. AIP Conference Proceedings, 1828. https://doi.org/10.1063/1.4979387
Azarbani, F., Saki, Z., Zareei, A., & Mohammadi, A. (2014). Phenolic contents, Antibacterial and antioxidant activities of flower, Leaf and stem extracts of ferulago angulata (schlecht) boiss. International Journal of Pharmacy and Pharmaceutical Sciences, 6(10), 123–125.
Banso, A. (2009). Phytochemical and antibacterial investigation of bark extracts of Acacia nilotica. Journal of Medicinal Plants Research, 3(2), 082–085.
Barzinjy, A. A., & Azeez, H. H. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2(5), 1–14. https://doi.org/10.1007/s42452-020-2813-1
Barzinjy, A. A., Hamad, S. M., Abdulrahman, A. F., Biro, S. J., & Ghafor, A. A. (2020). Biosynthesis, Characterization and Mechanism of Formation of ZnO Nanoparticles Using Petroselinum Crispum Leaf Extract. Current Organic Synthesis, 17(7), 558–566. https://doi.org/10.2174/1570179417666200628140547
Ben Amor, M. L., Zeghdi, S., Laouini, S. E., Bouafia, A., & Meneceur, S. (2022). pH reaction effect on biosynthesis of CuO/Cu2O nanoparticles by Moringa oleifera leaves extracts for antioxidant activities. Inorganic and Nano-Metal Chemistry, 0(0), 1–11. https://doi.org/10.1080/24701556.2022.2077376
Berra, D and Laouini, SE and Benhaoua, B and Ouahrani, MR and Berrani, D and Rahal, A. (2018). GREEN SYNTHESIS OF COPPER OXIDE NANOPARTICLES BY PHEONIX DACTYLIFERA L LEAVES EXTRACT. Digest Journal of Nanomaterials and Biostructures, 13, 1231--1238.
Bukhari, S. I., Hamed, M. M., Al-Agamy, M. H., Gazwi, H. S. S., Radwan, H. H., & Youssif, A. M. (2021). Biosynthesis of Copper Oxide Nanoparticles Using Streptomyces MHM38 and Its Biological Applications. Journal of Nanomaterials, 2021. https://doi.org/10.1155/2021/6693302
Dhineshbabu, N. R., & Vetumperumal, V. R. N. N. R. (2016). Study of structural and optical properties of cupric oxide nanoparticles. Applied Nanoscience, 6(6), 933–939. https://doi.org/10.1007/s13204-015-0499-2
Doganca, S., Ulubelen, A., & Tuzlaci, E. (1991). 1-Acetylhydroquinone 4-galactoside from Ferulago aucheri. Phytochemistry, 30(8), 2803–2805. https://doi.org/10.1016/0031-9422(91)85152-P
Dowsett, M., Wiesinger, R., & Adriaens, M. (2021). X-ray diffraction. Spectroscopy, Diffraction and Tomography in Art and Heritage Science, 161–207. https://doi.org/10.1016/B978-0-12-818860-6.00011-8
Elazab, H. A. (2018). The catalytic activity of copper oxide nanoparticles towards carbon monoxide oxidation catalysis: microwave – assisted synthesis approach. Biointerface Research in Applied Chemistry, 8(3), 3278–3281.
Fishman, Z. S., Rudshteyn, B., He, Y., Liu, B., Chaudhuri, S., Askerka, M., Haller, G. L., Batista, V. S., & Pfefferle, L. D. (2016). Fundamental Role of Oxygen Stoichiometry in Controlling the Band Gap and Reactivity of Cupric Oxide Nanosheets. Journal of the American Chemical Society, 138(34), 10978–10985. https://doi.org/10.1021/jacs.6b05332
Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 116(6), 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482
Giri, A., Pammi, S. S. S., & TVS, P. (2016). METABOLIC FINGERPRINTING OF ROOT, STEM AND LEAF EXTRACTS OF PHYLLANTHUS AMARUS. Journal of Phytology, 8, 17. https://doi.org/10.19071/jp.2016.v8.2985
Golfakhrabadi, F., Ardekani, M. R. S., Saeidnia, S., Yousefbeyk, F., Jamalifar, H., Ramezani, N., Akbarzadeh, T., & Khanavi, M. (2016). Phytochemical analysis, antimicrobial, antioxidant activities and total phenols of Ferulago carduchorum in two vegetative stages (flower and fruit). Pakistan Journal of Pharmaceutical Sciences, 29(2), 623–628.
Gopalakrishnan, K., Ramesh, C., Ragunathan, V., & Thamilselvan, M. (2012). Antibacterial activity of Cu2O nanoparticles on e.coli synthesized from tridax procumbens leaf extract and surface coating with polyaniline. Digest Journal of Nanomaterials and Biostructures, 7(2), 833–839.
Grigore, M. E., Biscu, E. R., Holban, A. M., Gestal, M. C., & Grumezescu, A. M. (2016). Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals, 9(4), 1–14. https://doi.org/10.3390/ph9040075
Harborne, J. B. (1973). Methods of Plant Analysis. In Phytochemical Methods (pp. 1–32). https://doi.org/10.1007/978-94-009-5921-7_1
Hassan, S. E. D., Fouda, A., Radwan, A. A., Salem, S. S., Barghoth, M. G., Awad, M. A., Abdo, A. M., & El-Gamal, M. S. (2019). Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Journal of Biological Inorganic Chemistry, 377–393. https://doi.org/10.1007/s00775-019-01654-5
Horti, N. C., Kamatagi, M. D., Patil, N. R., Sannaikar, M. S., & Inamdar, S. R. (2020). Synthesis and optical properties of copper oxide nanoparticles: effect of solvents. Journal of Nanophotonics, 14(04), 1–9. https://doi.org/10.1117/1.jnp.14.046010
Hosseini, N., Akbari, M., Ghafarzadegan, R., Changizi Ashtiyani, S., & Shahmohammadi, R. (2012). Total phenol, antioxidant and antibacterial activity of the essential oil and extracts of Ferulago angulata ssp. angulata. فصلنامه علمی پژوهشی گیاهان دارویی, 11(43), 80–89.
Humphreys, C. J. (2013). The significance of Braggs law in electron diffraction and microscopy, and Braggs second law. Acta Crystallographica Section A: Foundations of Crystallography, 69(1), 45–50. https://doi.org/10.1107/S0108767312047587
Javidnia, A., & Khoshneviszadeh, M. (2006). Constituents of the Volatile Oil of Ferulago angulata (Schlecht.) Boiss. from Iran. Journal of Essential Oil Research, 18(5), 548–550. https://doi.org/10.1080/10412905.2006.9699163
Jiménez, B., Grande, M. C., Anaya, J., Torres, P., & Grande, M. (2000). Coumarins from Ferulago capillaris and F. brachyloba. Phytochemistry, 53(8), 1025–1031. https://doi.org/10.1016/S0031-9422(99)00524-5
Kamarulzaman, N., Kasim, M. F., & Rusdi, R. (2015). Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1034-9
Kardong, D., Upadhyaya, S., & Saikia, L. R. (2013). Screening of phytochemicals, antioxidant and antibacterial activity of crude extract of Pteridium aquilinum Kuhn. Journal of Pharmacy Research, 6(1), 179–182. https://doi.org/10.1016/j.jopr.2012.11.037
Karimian, H., Moghadamtousi, S. Z., Fadaeinasab, M., Golbabapour, S., Razavi, M., Hajrezaie, M., Arya, A., Abdulla, M. A., Mohan, S., Ali, H. M., & Noordin, M. I. (2014). Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27. Drug Design, Development and Therapy, 8, 1481–1497. https://doi.org/10.2147/DDDT.S68818
Khalighi-Sigaroodi, F., Hadjiakhoondi, A., Shafiee, A., Mozaffarian, V. A., Shahverdi, A. R., & Alavi, S. H. R. (2006). Phytochemical analysis of Ferulogo Bernardii Tomk & M.Pimen. Daru, 14(4), 214–221.
Kiflom Gebremedhn, Mebrahtu Hagos Kahsay, & Muluken Aklilu. (2019). Green Synthesis of CuO Nanoparticles Using Leaf Extract of Catha edulis and Its Antibacterial Activity. Journal of Pharmacy and Pharmacology, 7(6). https://doi.org/10.17265/2328-2150/2019.06.007
Kwak, K., & Kim, C. (2005). Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea Australia Rheology Journal, 17(2), 35–40.
Lakshmibai, R., Amirtham, D., & Radhika, S. (2015). Preliminary phytochemical analysis and antioxidant activities of Prosopis juliflora and Mimosa pudica leaves. International Journal of Scientific Engineering and Technlogy Research, 04(30), 5766–5770.
M. Naseri, H. R. M.-E. (2013). AntioxidativeCoumarinsfromtheRootsofFerulagosubvelutina. Asian Journal of Chemistry, 25(4), 1875–1878.
Mabry, J., & Moubasher, A. (1990). Aryl esters. 29(3), 881–886.
Maku{l}a, Patrycja and Pacia, Micha{l} and Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV--Vis spectra. The Journal of Physical Chemistry Letters, 9, 6814--6817.
Manasa, D. J., Chandrashekar, K. R., Madhu Kumar, D. J., Niranjana, M., & Navada, K. M. (2021). Mussaenda frondosa L. mediated facile green synthesis of Copper oxide nanoparticles – Characterization, photocatalytic and their biological investigations. Arabian Journal of Chemistry, 14(6), 103184. https://doi.org/10.1016/j.arabjc.2021.103184
Melkamu, W. W., & Bitew, L. T. (2021). Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon, 7(11), e08459. https://doi.org/10.1016/j.heliyon.2021.e08459
Mohamed, E. A. (2020). Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon, 6(1), e03123. https://doi.org/10.1016/j.heliyon.2019.e03123
Mohammed, R. Y. (2021). Annealing effect on the structure and optical properties of cbd-zns thin films for windscreen coating. Materials, 14(22). https://doi.org/10.3390/ma14226748
Monfared, H. H., Fahimi, H., Ebrahimzade, H., Naghavi, M. R., Babaei, A., & Monfared, H. (2006). Ar ch Ar ch of.
Muthukumaran, S., & Gopalakrishnan, R. (2012). Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Optical Materials, 34(11), 1946–1953. https://doi.org/10.1016/j.optmat.2012.06.004
Nafeesa Zahid Malik1, Muhammad Riaz2, Qum Qum Noshad1, Neelum Rashid1, Q. U. A. and A. H. (2017). Morphological, phytochemical and antifungal analysis of Aloe vera L. leaf extracts. AJAB, 177–187.
Naik, A. V., & Sellappan, K. (2019). Physicochemical and Phytochemical Analysis of Different Plant Parts of Annona muricata L. (Annonaceae). Pharmaceutical Methods, 10(2), 70–78. https://doi.org/10.5530/phm.2019.2.13
Othman, F., Sadeghian, M. S., Ebrahimi, F., & Heydari, M. (2013). A Study on Sedimentation in Sefidroud Dam by Using Depth Evaluation and Comparing the Results with USBR and FAO Methods. International Proceedings of Chemical, Biological and Environmental Engineering, 51(9), 6. https://doi.org/10.7763/IPCBEE
Oza, G., Calzadilla-Avila, A. I., Reyes-Calderón, A., Anna, K. K., Ramírez-Bon, R., Tapia-Ramirez, J., & Sharma, A. (2020). pH-dependent biosynthesis of copper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation. Applied Nanoscience (Switzerland), 10(2), 541–550. https://doi.org/10.1007/s13204-019-01159-2
Peddi, P., Ptsrk, P. R., Rani, N. U., & Tulasi, S. L. (2021). Green synthesis, characterization, antioxidant, antibacterial, and photocatalytic activity of Suaeda maritima (L.) Dumort aqueous extract-mediated copper oxide nanoparticles. Journal of Genetic Engineering and Biotechnology, 19(1). https://doi.org/10.1186/s43141-021-00229-9
Raj, A., & Lawerence, R. (2018). Green synthesis and charcterization of ZnO nanoparticles from leafs extracts of Rosa indica and its antibacterial activity. Rasayan Journal of Chemistry, 11(3), 1339–1348. https://doi.org/10.31788/RJC.2018.1132009
Rehman, S., Akhtar Shad, N., Munir Sajid, M., Ali, K., Javed, Y., Jamil, Y., Sajjad, M., Nawaz, A., & Kumar Sharma, S. (2022). Tuning Structural and Optical Properties of Copper Oxide Nanomaterials by Thermal Heating and Its Effect on Photocatalytic Degradation of Congo Red Dye. Iranian Journal of Chemistry and Chemical Engineering, 41(5), 1549–1560. https://doi.org/10.30492/IJCCE.2021.127597.4127
Renuga, D., Jeyasundari, J., Shakthi Athithan, A. S., & Brightson Arul Jacob, Y. (2020). Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Materials Research Express, 7(4), 45007. https://doi.org/10.1088/2053-1591/ab7b94
Saif, S., Tahir, A., Asim, T., & Chen, Y. (2016). Plant mediated green synthesis of CuO nanoparticles: Comparison of toxicity of engineered and plant mediated CuO nanoparticles towards Daphnia magna. Nanomaterials, 6(11), 1–15. https://doi.org/10.3390/nano6110205
Salavati-Niasari, M., & Davar, F. (2009). Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor. Materials Letters, 63(3–4), 441–443. https://doi.org/10.1016/j.matlet.2008.11.023
Salim, H. I. (2016). Multilayer Solar Cells Based on CdTe Grown From Nitrate Precursor, PhD Thesis, Sheffield Hallam University, UK (Issue March).
Shahabi, S., Hassan, Z. M., Mahdavi, M., Dezfouli, M., Rahvar, M. T., Naseri, M., & Jazani, N. H. (2007). Ar ch ive Ar ch ive. 11(1), 51–59.
Shamsuddin, M., & Raja Nordin, N. (2019). Biosynthesis of copper(II) oxide nanoparticles using Murayya koeniggi aqueous leaf extract and its catalytic activity in 4-nitrophenol reduction. Malaysian Journal of Fundamental and Applied Sciences, 15(2), 218–224. https://doi.org/10.11113/mjfas.v15n2.1390
Shanan, Z. J., Hadi, S. M., & Shanshool, S. K. (2018). Structural analysis of chemical and green synthesis of cuo nanoparticles and their effect on biofilm formation. Baghdad Science Journal, 15(2), 211–216. https://doi.org/10.21123/BSJ.15.2.211-216
Singh, V., & Kumar, R. (2017). Study of Phytochemical Analysis and Antioxidant Activity of Allium sativum of Bundelkhand Region. International Journal of Life-Sciences Scientific Research, 3(6), 1451–1458. https://doi.org/10.21276/ijlssr.2017.3.6.4
Sivaranjani, D. (2021). Phytochemical Analysis , Antioxidant and Antidiabetic Properties of Prosopis juliflora ( KaruvelamPattai ) Extract. October.
Sone, B. T., Diallo, A., Fuku, X. G., Gurib-Fakim, A., & Maaza, M. (2020). Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics. Arabian Journal of Chemistry, 13(1), 160–170. https://doi.org/10.1016/j.arabjc.2017.03.004
Taran, M., Safaei, M., Karimi, N., & Almasi, A. (2021). Benefits and application of nanotechnology in environmental science: an overview. Biointerface Research in Applied Chemistry, 11(1), 7860–7870. https://doi.org/10.33263/BRIAC111.78607870
Thamer, N. A., Muftin, N. Q., & Al-Rubae, S. H. N. (2018). Optimization properties and characterization of green synthesis of copper oxide nanoparticles using aqueous extract of cordia myxa L. Leaves. Asian Journal of Chemistry, 30(7), 1559–1563. https://doi.org/10.14233/ajchem.2018.21242
Tripathi, A., Dixit, T., Agrawal, J., & Singh, V. (2020). Bandgap engineering in CuO nanostructures: Dual-band, broadband, and UV-C photodetectors. Applied Physics Letters, 116(11). https://doi.org/10.1063/1.5128494
Tyagi, T. (2017). Phytochemical screening of active metabolites present in Eichhornia crassipes (Mart.) Solms and Pistia stratiotes (L.): Role in ethanomedicine. Asian Journal of Pharmaceutical Education and Research, 6(4), 40–56.
Uma, K., Parthiban, P., & Kalpana, S. (2017). Pharmacognostical and preliminary phytochemical screening of Aavaarai Vidhai Chooranam. Asian Journal of Pharmaceutical and Clinical Research, 10(10), 111–116. https://doi.org/10.22159/ajpcr.2017.v10i10.19422
Usha, V., Kalyanaraman, S., Thangavel, R., & Vettumperumal, R. (2015). Effect of catalysts on the synthesis of CuO nanoparticles: Structural and optical properties by sol-gel method. Superlattices and Microstructures, 86, 203–210. https://doi.org/10.1016/j.spmi.2015.07.053
Velusamy, V., Palanisamy, S., Kokulnathan, T., Chen, S. W., Yang, T. C. K., Banks, C. E., & Pramanik, S. K. (2018). Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. Journal of Colloid and Interface Science, 530, 37–45. https://doi.org/10.1016/j.jcis.2018.06.056
Vishveshvar, K., Aravind Krishnan, M. V., Haribabu, K., & Vishnuprasad, S. (2018). Green Synthesis of Copper Oxide Nanoparticles Using Ixiro coccinea Plant Leaves and its Characterization. BioNanoScience, 8(2), 554–558. https://doi.org/10.1007/s12668-018-0508-5
Abdulqudos, A., & Abdulrahman, A. F. (2022). Biosynthesis and Characterization of ZnO Nanoparticles by using Leaf Extractionof Allium Calocephalum Wendelbow Plant. Passer Journal of Basic and Applied Sciences, 4(2), 113–126. https://doi.org/10.24271/psr.2022.343112.1136
Altikatoglu, Melda and Attar, Azade and Erci, Fatih and Cristache, Corina Marilena and Isildak, I. and others. (2017). Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity. In Fresenius Environ. Bull (Vol. 25).
Aminuzzaman, M., Kei, L. M., & Liang, W. H. (2017). Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities. AIP Conference Proceedings, 1828. https://doi.org/10.1063/1.4979387
Azarbani, F., Saki, Z., Zareei, A., & Mohammadi, A. (2014). Phenolic contents, Antibacterial and antioxidant activities of flower, Leaf and stem extracts of ferulago angulata (schlecht) boiss. International Journal of Pharmacy and Pharmaceutical Sciences, 6(10), 123–125.
Banso, A. (2009). Phytochemical and antibacterial investigation of bark extracts of Acacia nilotica. Journal of Medicinal Plants Research, 3(2), 082–085.
Barzinjy, A. A., & Azeez, H. H. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2(5), 1–14. https://doi.org/10.1007/s42452-020-2813-1
Barzinjy, A. A., Hamad, S. M., Abdulrahman, A. F., Biro, S. J., & Ghafor, A. A. (2020). Biosynthesis, Characterization and Mechanism of Formation of ZnO Nanoparticles Using Petroselinum Crispum Leaf Extract. Current Organic Synthesis, 17(7), 558–566. https://doi.org/10.2174/1570179417666200628140547
Ben Amor, M. L., Zeghdi, S., Laouini, S. E., Bouafia, A., & Meneceur, S. (2022). pH reaction effect on biosynthesis of CuO/Cu2O nanoparticles by Moringa oleifera leaves extracts for antioxidant activities. Inorganic and Nano-Metal Chemistry, 0(0), 1–11. https://doi.org/10.1080/24701556.2022.2077376
Berra, D and Laouini, SE and Benhaoua, B and Ouahrani, MR and Berrani, D and Rahal, A. (2018). GREEN SYNTHESIS OF COPPER OXIDE NANOPARTICLES BY PHEONIX DACTYLIFERA L LEAVES EXTRACT. Digest Journal of Nanomaterials and Biostructures, 13, 1231--1238.
Bukhari, S. I., Hamed, M. M., Al-Agamy, M. H., Gazwi, H. S. S., Radwan, H. H., & Youssif, A. M. (2021). Biosynthesis of Copper Oxide Nanoparticles Using Streptomyces MHM38 and Its Biological Applications. Journal of Nanomaterials, 2021. https://doi.org/10.1155/2021/6693302
Dhineshbabu, N. R., & Vetumperumal, V. R. N. N. R. (2016). Study of structural and optical properties of cupric oxide nanoparticles. Applied Nanoscience, 6(6), 933–939. https://doi.org/10.1007/s13204-015-0499-2
Doganca, S., Ulubelen, A., & Tuzlaci, E. (1991). 1-Acetylhydroquinone 4-galactoside from Ferulago aucheri. Phytochemistry, 30(8), 2803–2805. https://doi.org/10.1016/0031-9422(91)85152-P
Dowsett, M., Wiesinger, R., & Adriaens, M. (2021). X-ray diffraction. Spectroscopy, Diffraction and Tomography in Art and Heritage Science, 161–207. https://doi.org/10.1016/B978-0-12-818860-6.00011-8
Elazab, H. A. (2018). The catalytic activity of copper oxide nanoparticles towards carbon monoxide oxidation catalysis: microwave – assisted synthesis approach. Biointerface Research in Applied Chemistry, 8(3), 3278–3281.
Fishman, Z. S., Rudshteyn, B., He, Y., Liu, B., Chaudhuri, S., Askerka, M., Haller, G. L., Batista, V. S., & Pfefferle, L. D. (2016). Fundamental Role of Oxygen Stoichiometry in Controlling the Band Gap and Reactivity of Cupric Oxide Nanosheets. Journal of the American Chemical Society, 138(34), 10978–10985. https://doi.org/10.1021/jacs.6b05332
Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 116(6), 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482
Giri, A., Pammi, S. S. S., & TVS, P. (2016). METABOLIC FINGERPRINTING OF ROOT, STEM AND LEAF EXTRACTS OF PHYLLANTHUS AMARUS. Journal of Phytology, 8, 17. https://doi.org/10.19071/jp.2016.v8.2985
Golfakhrabadi, F., Ardekani, M. R. S., Saeidnia, S., Yousefbeyk, F., Jamalifar, H., Ramezani, N., Akbarzadeh, T., & Khanavi, M. (2016). Phytochemical analysis, antimicrobial, antioxidant activities and total phenols of Ferulago carduchorum in two vegetative stages (flower and fruit). Pakistan Journal of Pharmaceutical Sciences, 29(2), 623–628.
Gopalakrishnan, K., Ramesh, C., Ragunathan, V., & Thamilselvan, M. (2012). Antibacterial activity of Cu2O nanoparticles on e.coli synthesized from tridax procumbens leaf extract and surface coating with polyaniline. Digest Journal of Nanomaterials and Biostructures, 7(2), 833–839.
Grigore, M. E., Biscu, E. R., Holban, A. M., Gestal, M. C., & Grumezescu, A. M. (2016). Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals, 9(4), 1–14. https://doi.org/10.3390/ph9040075
Harborne, J. B. (1973). Methods of Plant Analysis. In Phytochemical Methods (pp. 1–32). https://doi.org/10.1007/978-94-009-5921-7_1
Hassan, S. E. D., Fouda, A., Radwan, A. A., Salem, S. S., Barghoth, M. G., Awad, M. A., Abdo, A. M., & El-Gamal, M. S. (2019). Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Journal of Biological Inorganic Chemistry, 377–393. https://doi.org/10.1007/s00775-019-01654-5
Horti, N. C., Kamatagi, M. D., Patil, N. R., Sannaikar, M. S., & Inamdar, S. R. (2020). Synthesis and optical properties of copper oxide nanoparticles: effect of solvents. Journal of Nanophotonics, 14(04), 1–9. https://doi.org/10.1117/1.jnp.14.046010
Hosseini, N., Akbari, M., Ghafarzadegan, R., Changizi Ashtiyani, S., & Shahmohammadi, R. (2012). Total phenol, antioxidant and antibacterial activity of the essential oil and extracts of Ferulago angulata ssp. angulata. فصلنامه علمی پژوهشی گیاهان دارویی, 11(43), 80–89.
Humphreys, C. J. (2013). The significance of Braggs law in electron diffraction and microscopy, and Braggs second law. Acta Crystallographica Section A: Foundations of Crystallography, 69(1), 45–50. https://doi.org/10.1107/S0108767312047587
Javidnia, A., & Khoshneviszadeh, M. (2006). Constituents of the Volatile Oil of Ferulago angulata (Schlecht.) Boiss. from Iran. Journal of Essential Oil Research, 18(5), 548–550. https://doi.org/10.1080/10412905.2006.9699163
Jiménez, B., Grande, M. C., Anaya, J., Torres, P., & Grande, M. (2000). Coumarins from Ferulago capillaris and F. brachyloba. Phytochemistry, 53(8), 1025–1031. https://doi.org/10.1016/S0031-9422(99)00524-5
Kamarulzaman, N., Kasim, M. F., & Rusdi, R. (2015). Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1034-9
Kardong, D., Upadhyaya, S., & Saikia, L. R. (2013). Screening of phytochemicals, antioxidant and antibacterial activity of crude extract of Pteridium aquilinum Kuhn. Journal of Pharmacy Research, 6(1), 179–182. https://doi.org/10.1016/j.jopr.2012.11.037
Karimian, H., Moghadamtousi, S. Z., Fadaeinasab, M., Golbabapour, S., Razavi, M., Hajrezaie, M., Arya, A., Abdulla, M. A., Mohan, S., Ali, H. M., & Noordin, M. I. (2014). Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27. Drug Design, Development and Therapy, 8, 1481–1497. https://doi.org/10.2147/DDDT.S68818
Khalighi-Sigaroodi, F., Hadjiakhoondi, A., Shafiee, A., Mozaffarian, V. A., Shahverdi, A. R., & Alavi, S. H. R. (2006). Phytochemical analysis of Ferulogo Bernardii Tomk & M.Pimen. Daru, 14(4), 214–221.
Kiflom Gebremedhn, Mebrahtu Hagos Kahsay, & Muluken Aklilu. (2019). Green Synthesis of CuO Nanoparticles Using Leaf Extract of Catha edulis and Its Antibacterial Activity. Journal of Pharmacy and Pharmacology, 7(6). https://doi.org/10.17265/2328-2150/2019.06.007
Kwak, K., & Kim, C. (2005). Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea Australia Rheology Journal, 17(2), 35–40.
Lakshmibai, R., Amirtham, D., & Radhika, S. (2015). Preliminary phytochemical analysis and antioxidant activities of Prosopis juliflora and Mimosa pudica leaves. International Journal of Scientific Engineering and Technlogy Research, 04(30), 5766–5770.
M. Naseri, H. R. M.-E. (2013). AntioxidativeCoumarinsfromtheRootsofFerulagosubvelutina. Asian Journal of Chemistry, 25(4), 1875–1878.
Mabry, J., & Moubasher, A. (1990). Aryl esters. 29(3), 881–886.
Maku{l}a, Patrycja and Pacia, Micha{l} and Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV--Vis spectra. The Journal of Physical Chemistry Letters, 9, 6814--6817.
Manasa, D. J., Chandrashekar, K. R., Madhu Kumar, D. J., Niranjana, M., & Navada, K. M. (2021). Mussaenda frondosa L. mediated facile green synthesis of Copper oxide nanoparticles – Characterization, photocatalytic and their biological investigations. Arabian Journal of Chemistry, 14(6), 103184. https://doi.org/10.1016/j.arabjc.2021.103184
Melkamu, W. W., & Bitew, L. T. (2021). Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon, 7(11), e08459. https://doi.org/10.1016/j.heliyon.2021.e08459
Mohamed, E. A. (2020). Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon, 6(1), e03123. https://doi.org/10.1016/j.heliyon.2019.e03123
Mohammed, R. Y. (2021). Annealing effect on the structure and optical properties of cbd-zns thin films for windscreen coating. Materials, 14(22). https://doi.org/10.3390/ma14226748
Monfared, H. H., Fahimi, H., Ebrahimzade, H., Naghavi, M. R., Babaei, A., & Monfared, H. (2006). Ar ch Ar ch of.
Muthukumaran, S., & Gopalakrishnan, R. (2012). Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Optical Materials, 34(11), 1946–1953. https://doi.org/10.1016/j.optmat.2012.06.004
Nafeesa Zahid Malik1, Muhammad Riaz2, Qum Qum Noshad1, Neelum Rashid1, Q. U. A. and A. H. (2017). Morphological, phytochemical and antifungal analysis of Aloe vera L. leaf extracts. AJAB, 177–187.
Naik, A. V., & Sellappan, K. (2019). Physicochemical and Phytochemical Analysis of Different Plant Parts of Annona muricata L. (Annonaceae). Pharmaceutical Methods, 10(2), 70–78. https://doi.org/10.5530/phm.2019.2.13
Othman, F., Sadeghian, M. S., Ebrahimi, F., & Heydari, M. (2013). A Study on Sedimentation in Sefidroud Dam by Using Depth Evaluation and Comparing the Results with USBR and FAO Methods. International Proceedings of Chemical, Biological and Environmental Engineering, 51(9), 6. https://doi.org/10.7763/IPCBEE
Oza, G., Calzadilla-Avila, A. I., Reyes-Calderón, A., Anna, K. K., Ramírez-Bon, R., Tapia-Ramirez, J., & Sharma, A. (2020). pH-dependent biosynthesis of copper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation. Applied Nanoscience (Switzerland), 10(2), 541–550. https://doi.org/10.1007/s13204-019-01159-2
Peddi, P., Ptsrk, P. R., Rani, N. U., & Tulasi, S. L. (2021). Green synthesis, characterization, antioxidant, antibacterial, and photocatalytic activity of Suaeda maritima (L.) Dumort aqueous extract-mediated copper oxide nanoparticles. Journal of Genetic Engineering and Biotechnology, 19(1). https://doi.org/10.1186/s43141-021-00229-9
Raj, A., & Lawerence, R. (2018). Green synthesis and charcterization of ZnO nanoparticles from leafs extracts of Rosa indica and its antibacterial activity. Rasayan Journal of Chemistry, 11(3), 1339–1348. https://doi.org/10.31788/RJC.2018.1132009
Rehman, S., Akhtar Shad, N., Munir Sajid, M., Ali, K., Javed, Y., Jamil, Y., Sajjad, M., Nawaz, A., & Kumar Sharma, S. (2022). Tuning Structural and Optical Properties of Copper Oxide Nanomaterials by Thermal Heating and Its Effect on Photocatalytic Degradation of Congo Red Dye. Iranian Journal of Chemistry and Chemical Engineering, 41(5), 1549–1560. https://doi.org/10.30492/IJCCE.2021.127597.4127
Renuga, D., Jeyasundari, J., Shakthi Athithan, A. S., & Brightson Arul Jacob, Y. (2020). Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Materials Research Express, 7(4), 45007. https://doi.org/10.1088/2053-1591/ab7b94
Saif, S., Tahir, A., Asim, T., & Chen, Y. (2016). Plant mediated green synthesis of CuO nanoparticles: Comparison of toxicity of engineered and plant mediated CuO nanoparticles towards Daphnia magna. Nanomaterials, 6(11), 1–15. https://doi.org/10.3390/nano6110205
Salavati-Niasari, M., & Davar, F. (2009). Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor. Materials Letters, 63(3–4), 441–443. https://doi.org/10.1016/j.matlet.2008.11.023
Salim, H. I. (2016). Multilayer Solar Cells Based on CdTe Grown From Nitrate Precursor, PhD Thesis, Sheffield Hallam University, UK (Issue March).
Shahabi, S., Hassan, Z. M., Mahdavi, M., Dezfouli, M., Rahvar, M. T., Naseri, M., & Jazani, N. H. (2007). Ar ch ive Ar ch ive. 11(1), 51–59.
Shamsuddin, M., & Raja Nordin, N. (2019). Biosynthesis of copper(II) oxide nanoparticles using Murayya koeniggi aqueous leaf extract and its catalytic activity in 4-nitrophenol reduction. Malaysian Journal of Fundamental and Applied Sciences, 15(2), 218–224. https://doi.org/10.11113/mjfas.v15n2.1390
Shanan, Z. J., Hadi, S. M., & Shanshool, S. K. (2018). Structural analysis of chemical and green synthesis of cuo nanoparticles and their effect on biofilm formation. Baghdad Science Journal, 15(2), 211–216. https://doi.org/10.21123/BSJ.15.2.211-216
Singh, V., & Kumar, R. (2017). Study of Phytochemical Analysis and Antioxidant Activity of Allium sativum of Bundelkhand Region. International Journal of Life-Sciences Scientific Research, 3(6), 1451–1458. https://doi.org/10.21276/ijlssr.2017.3.6.4
Sivaranjani, D. (2021). Phytochemical Analysis , Antioxidant and Antidiabetic Properties of Prosopis juliflora ( KaruvelamPattai ) Extract. October.
Sone, B. T., Diallo, A., Fuku, X. G., Gurib-Fakim, A., & Maaza, M. (2020). Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics. Arabian Journal of Chemistry, 13(1), 160–170. https://doi.org/10.1016/j.arabjc.2017.03.004
Taran, M., Safaei, M., Karimi, N., & Almasi, A. (2021). Benefits and application of nanotechnology in environmental science: an overview. Biointerface Research in Applied Chemistry, 11(1), 7860–7870. https://doi.org/10.33263/BRIAC111.78607870
Thamer, N. A., Muftin, N. Q., & Al-Rubae, S. H. N. (2018). Optimization properties and characterization of green synthesis of copper oxide nanoparticles using aqueous extract of cordia myxa L. Leaves. Asian Journal of Chemistry, 30(7), 1559–1563. https://doi.org/10.14233/ajchem.2018.21242
Tripathi, A., Dixit, T., Agrawal, J., & Singh, V. (2020). Bandgap engineering in CuO nanostructures: Dual-band, broadband, and UV-C photodetectors. Applied Physics Letters, 116(11). https://doi.org/10.1063/1.5128494
Tyagi, T. (2017). Phytochemical screening of active metabolites present in Eichhornia crassipes (Mart.) Solms and Pistia stratiotes (L.): Role in ethanomedicine. Asian Journal of Pharmaceutical Education and Research, 6(4), 40–56.
Uma, K., Parthiban, P., & Kalpana, S. (2017). Pharmacognostical and preliminary phytochemical screening of Aavaarai Vidhai Chooranam. Asian Journal of Pharmaceutical and Clinical Research, 10(10), 111–116. https://doi.org/10.22159/ajpcr.2017.v10i10.19422
Usha, V., Kalyanaraman, S., Thangavel, R., & Vettumperumal, R. (2015). Effect of catalysts on the synthesis of CuO nanoparticles: Structural and optical properties by sol-gel method. Superlattices and Microstructures, 86, 203–210. https://doi.org/10.1016/j.spmi.2015.07.053
Velusamy, V., Palanisamy, S., Kokulnathan, T., Chen, S. W., Yang, T. C. K., Banks, C. E., & Pramanik, S. K. (2018). Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. Journal of Colloid and Interface Science, 530, 37–45. https://doi.org/10.1016/j.jcis.2018.06.056
Vishveshvar, K., Aravind Krishnan, M. V., Haribabu, K., & Vishnuprasad, S. (2018). Green Synthesis of Copper Oxide Nanoparticles Using Ixiro coccinea Plant Leaves and its Characterization. BioNanoScience, 8(2), 554–558. https://doi.org/10.1007/s12668-018-0508-5
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sanya S. Omar, Raghad Y. Mohammed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.