INFLUENCE OF ANNEALING TEMPERATURE ON ZINC OXYSULPHIDE THIN FILMS PROPERTIES DEPOSITED BY THERMAL SPRAY TECHNIQUE
DOI:
https://doi.org/10.25271/sjuoz.2023.11.4.1192Keywords:
Thermal Spray, Thin Films, Morphology, Energy Bandgap, Zinc OxysulphideAbstract
This article studies the effects of annealing temperatures on the stoichiometry, structure, and optical characteristics of Zinc Oxysulphide thin films deposited on glass substrates using the thermal spray method. The annealing was done in the air under a temperature of 150 ºC, 250 ºC and 350 ºC. Field Emission Scanning Electron Microscopy (FESEM), X-ray diffractometry (XRD), and a UV-Vis Spectrophotometer were utilized to examine the thin films' morphological, structure, and optical characteristics as grown and annealed samples. It has been observed that the film thickness decreases as the annealing temperature increases. The XRD pattern demonstrates that as-prepared and annealed samples at 250C, and 350C are amorphous, while film annealed at 150 C is crystalline with the hexagonal phase and orientated along (110) plane. FESEM image of the as-prepared Zinc Oxysulphide thin films shows flower-like sheet nanostructures. However, for the annealed samples, the FESEM images show cone-like with a combination of sheets and aggregate nanoparticles. EDX analysis reveals the presence of Zn, O as well as sulfur. The transmittance of the film decreases from 63% to 37% and the band gap energy reduces slightly from 3.99 to 3.92 eV as the annealing temperature increase.
References
Abe, Y., Komatsu, A., Nohira, H., Nakanishi, K., Minemoto, T., Ohta, T., & Takakura, H. (2012). Interfacial layer formation at ZnO/CdS interface. Applied Surface Science, 258(20), 8090-8093.
Algadri, N. A., AL-Diabat, A. M., & Ahmed, N. M. (2023). Zinc sulfide based thin film photodetector prepared by spray pyrolysis. Instrumentation Science & Technology, 51(2), 144-161.
Ardekani, S. R., Aghdam, A. S. R., Nazari, M., Bayat, A., Yazdani, E., & Saievar-Iranizad, E. (2019). A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. Journal of Analytical and Applied Pyrolysis, 141, 104631.
Ashour, A., Kaid, M., El-Sayed, N., & Ibrahim, A. (2006). Physical properties of ZnO thin films deposited by spray pyrolysis technique. Applied Surface Science, 252(22), 7844-7848.
ávan der Put, P. J. (1996). Morphology control of thin LiCoO 2 films fabricated using the electrostatic spray deposition (ESD) technique. Journal of Materials Chemistry, 6(5), 765-771.
Axinte, E. (2011). Glasses as engineering materials: A review. Materials & Design, 32(4), 1717-1732.
Bakke, J. R., Tanskanen, J. T., Hägglund, C., Pakkanen, T. A., & Bent, S. F. (2012a). Growth characteristics, material properties, and optical properties of zinc oxysulfide films deposited by atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30(1), 01A135.
Bakke, J. R., Tanskanen, J. T., Hägglund, C., Pakkanen, T. A., & Bent, S. F. (2012b). Growth characteristics, material properties, and optical properties of zinc oxysulfide films deposited by atomic layer deposition. Journal of Vacuum Science & Technology A, 30(1).
Basnet, P., Samanta, D., & Chatterjee, S. (2021). Chemical Approach Based ZnS-ZnO Nanocomposite Synthesis and Assessment of their Structural, Morphological and Photocatalytic Properties.
Belkhalfa, H., Ayed, H., Hafdallah, A., Aida, M., & Ighil, R. T. (2016). Characterization and studying of ZnO thin films deposited by spray pyrolysis: effect of annealing temperature. Optik, 127(4), 2336-2340.
Bhateja, A., Varma, A., Kashyap, A., & Singh, B. (2012). Study the effect on the hardness of three sample grades of tool steel ie EN-31, EN-8, and D3 after heat treatment processes such as annealing, normalizing, and hardening & tempering. The International Journal of Engineering And Science (IJES), 1(2).
Brinzari, V., Korotcenkov, G., & Golovanov, V. (2001). Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control. Thin solid films, 391(2), 167-175.
Bugot, C., Schneider, N., Jubault, M., Lincot, D., & Donsanti, F. (2015). Temperature effect on zinc oxysulfide-Zn (O, S) films synthesized by atomic layer deposition for Cu (In, Ga) Se2 solar cells. Journal of Vacuum Science & Technology A, 33(1).
Caglar, M., Ilican, S., Caglar, Y., & Yakuphanoglu, F. (2008). The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method. Journal of Materials Science: Materials in Electronics, 19(8), 704-708.
Chelvanathan, P., Yusoff, Y., Haque, F., Akhtaruzzaman, M., Alam, M., Alothman, Z., . . . Amin, N. (2015). Growth and characterization of RF-sputtered ZnS thin film deposited at various substrate temperatures for photovoltaic application. Applied Surface Science, 334, 138-144.
Dadlani, A. L., Trejo, O., Acharya, S., Torgersen, J., Petousis, I., Nordlund, D., . . . Prinz, F. B. (2015). Exploring the local electronic structure and geometric arrangement of ALD Zn (O, S) buffer layers using X-ray absorption spectroscopy. Journal of Materials Chemistry C, 3(47), 12192-12198.
Deulkar, S. H., Huang, J.-L., & Neumann-Spallart, M. (2010a). Zinc oxysulfide thin films grown by pulsed laser deposition. Journal of electronic materials, 39(5), 589-594.
Deulkar, S. H., Huang, J.-L., & Neumann-Spallart, M. (2010b). Zinc oxysulfide thin films grown by pulsed laser deposition. Journal of electronic materials, 39, 589-594.
Du Ahn, B., Oh, S. H., Lee, C. H., Kim, G. H., Kim, H. J., & Lee, S. Y. (2007). Influence of thermal annealing ambient on Ga-doped ZnO thin films. Journal of crystal growth, 309(2), 128-133.
Earis, P., Montgomery, H., Weatherby, S., Frame, R., Chen, F., Bergius, W., . . . Smekal, T. (2013). www. rsc. org/nanoscale. Nanoscale, 5(1849), 1768-1771.
Echendu, O., Werta, S., Dejene, F., & Craciun, V. (2018). Electrochemical deposition and characterization of ZnOS thin films for photovoltaic and photocatalysis applications. Journal of alloys and compounds, 769, 201-209.
Erdoğan, E., & Kiyak Yildirim, A. (2023). Synthesis of Zn-doped lead sulphide by electrodeposition: potential change on structural, morphological, and optical properties. Journal of Materials Science: Materials in Electronics, 34(10), 880.
Galedari, S. A., Mahdavi, A., Azarmi, F., Huang, Y., & McDonald, A. (2019). A comprehensive review of corrosion resistance of thermally-sprayed and thermally-diffused protective coatings on steel structures. Journal of Thermal Spray Technology, 28, 645-677.
Golshahi, S., Rozati, S., Martins, R., & Fortunato, E. (2009). P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration. Thin solid films, 518(4), 1149-1152.
Grimm, A., Kieven, D., Lauermann, I., Lux-Steiner, M. C., Hergert, F., Schwieger, R., & Klenk, R. (2012). Zn (O, S) layers for chalcoyprite solar cells sputtered from a single target. EPJ Photovoltaics, 3, 30302.
Heikkinen, I. (2016). Characterization of zinc oxide, sulfide and oxysulfide thin films grown by spatial atomic layer deposition.
Hsieh, T.-M., Lue, S. J., Ao, J., Sun, Y., Feng, W.-S., & Chang, L.-B. (2014). Characterizations of chemical bath-deposited zinc oxysulfide films and the effects of their annealing on copper–indium–gallium–selenide solar cell efficiency. Journal of Power Sources, 246, 443-448.
Islam, M. M., Ishizuka, S., Yamada, A., Sakurai, K., Niki, S., Sakurai, T., & Akimoto, K. (2009). CIGS solar cell with MBE-grown ZnS buffer layer. Solar energy materials and solar cells, 93(6-7), 970-972.
Jani, M., Raval, D., Pati, R., Mukhopadhyay, I., & Ray, A. (2017). Structure, optical and electronic properties of solid solution Zn (O, S) thin films and the effect of annealing. Applied Physics A, 123, 1-8.
Jones, A. C., & Hitchman, M. L. (2009). Overview of chemical vapour deposition. Chemical Vapour Deposition: Precursors, Processes and Applications, 1, 1-36.
Jule, L. T. (2017). Theoretical and experimental study of core-shell structured ZnO/ZnS and growth mechanism of un-doped and doped ZnO nanomaterials. University of the Free State (Qwaqwa Campus).
Kang, H. S., Kang, J. S., Kim, J. W., & Lee, S. Y. (2004). Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. Journal of applied physics, 95(3), 1246-1250.
Karamdel, J., Dee, C., & Majlis, B. Y. (2011). Effects of annealing conditions on the surface morphology and crystallinity of sputtered ZnO nano films. Sains Malaysiana, 40(3), 209-213.
Kaur, J., & Pandey, O. (2010). Synthesis and Photo-Catalytic Studies of ZnS Nanoparticles.
Khalil, M. H., Mohammed, R. Y., & Ibrahem, M. A. (2021). The influence of CBD parameters on the energy gap of ZnS Narcissus-like nanostructured thin films. Coatings, 11(9), 1131.
Khalil, M. H., Mohammed, R. Y., & Ibrahem, M. A. (2022). Influence of post annealing on CBD deposited ZnS thin films. Paper presented at the AIP Conference Proceedings.
King, M., McClure, W., Andrews, L., & Holomery, M. (1992). Powder diffraction file alphabetic index, inorganic phases/organic phases. International Center for Diffraction Data, Newtown Square, Pa, USA.
Korotcenkov, G., Brinzari, V., Schwank, J., & Cerneavschi, A. (2002). Possibilities of aerosol technology for deposition of SnO2-based films with improved gas sensing characteristics. Materials Science and Engineering: C, 19(1-2), 73-77.
Krunks, M., & Mellikov, E. (1995). Zinc oxide thin films by the spray pyrolysis method. Thin solid films, 270(1-2), 33-36.
Kumar, M. (2019). Effect of substrate temperature on surface morphology and optical properties of sputter deposited nanocrystalline nickel oxide films. Materials Research Express, 6(9), 096404.
Lu, H.-Y., Chu, S.-Y., & Tan, S.-S. (2004). The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles. Journal of crystal growth, 269(2-4), 385-391.
Marimuthu, S., Sezer, H. K., & Kamara, A. M. (2019). Applications of laser cleaning process in high value manufacturing industries Developments in surface contamination and cleaning: applications of cleaning techniques (pp. 251-288): Elsevier.
Natarajan, C., Fukunaga, N., & Nogami, G. (1998). Titanium dioxide thin film deposited by spray pyrolysis of aqueous solution. Thin solid films, 322(1-2), 6-8.
Okamoto, A., Minemoto, T., & Takakura, H. (2011). Application of Sputtered ZnO1-xSx Buffer Layers for Cu (In, Ga) Se2 Solar Cells. Japanese journal of applied physics, 50(4S), 04DP10.
Patil, P., & Kadam, L. (2002). Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Applied Surface Science, 199(1-4), 211-221.
Patil, P. S. (1999). Versatility of chemical spray pyrolysis technique. Materials Chemistry and physics, 59(3), 185-198.
Perednis, D., & Gauckler, L. J. (2005). Thin film deposition using spray pyrolysis. Journal of electroceramics, 14, 103-111.
Persson, C., Platzer-Björkman, C., Malmström, J., Törndahl, T., & Edoff, M. (2006). Strong valence-band offset bowing of ZnO 1− x S x enhances p-type nitrogen doping of ZnO-like alloys. Physical review letters, 97(14), 146403.
Platzer-Björkman, C., Törndahl, T., Abou-Ras, D., Malmström, J., Kessler, J., & Stolt, L. (2006). Zn (O, S) buffer layers by atomic layer deposition in Cu (In, Ga) Se2 based thin film solar cells: Band alignment and sulfur gradient. Journal of applied physics, 100(4).
Polat, İ., Aksu, S., Altunbaş, M., & Bacaksız, E. (2012). The influence of diffusion temperature on the structural, optical, and magnetic properties of nickel‐doped zinc oxysulfide thin films. physica status solidi (a), 209(1), 160-166.
Riad, A., Mahmoud, S., & Ibrahim, A. (2001). Structural and DC electrical investigations of ZnO thin films prepared by spray pyrolysis technique. Physica B: Condensed Matter, 296(4), 319-325.
Sagar, P., Shishodia, P., Mehra, R., Okada, H., Wakahara, A., & Yoshida, A. (2007). Photoluminescence and absorption in sol–gel-derived ZnO films. Journal of Luminescence, 126(2), 800-806.
Salam, S., Islam, M., Alam, M., Akram, A., Ikram, M., Mahmood, A., . . . Mujahid, M. (2011). The effect of processing conditions on the structural morphology and physical properties of ZnO and CdS thin films produced via sol–gel synthesis and chemical bath deposition techniques. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(4), 045001.
Sanders, B., & Kitai, A. (1992). Zinc oxysulfide thin films grown by atomic layer deposition. Chemistry of materials, 4(5), 1005-1011.
Vanjari, R., & Singh, K. N. (2015). Utilization of methylarenes as versatile building blocks in organic synthesis. Chemical Society Reviews, 44(22), 8062-8096.
Vigil, O., Cruz, F., Morales-Acevedo, A., Contreras-Puente, G., Vaillant, L., & Santana, G. (2001). Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis. Materials Chemistry and physics, 68(1-3), 249-252.
Wahab, R., Ansari, S., Kim, Y.-S., Dhage, M., Seo, H. K., Song, M., & Shin, H.-S. (2009). Effect of annealing on the conversion of ZnS to ZnO nanoparticles synthesized by the sol-gel method using zinc acetate and thiourea. Metals and Materials International, 15, 453-458.
Wang, L., Pu, Y., Fang, W., Dai, J., Zheng, C., Mo, C., . . . Jiang, F. (2005). Effect of high-temperature annealing on the structural and optical properties of ZnO films. Thin solid films, 491(1-2), 323-327.
Zazueta-Raynaud, A., Cordova-Rubio, A., Lopez-Delgado, R., Pelayo-Ceja, J. E., Carrillo-Torres, R., Sanchez-Zeferino, R., . . . Ayon, A. (2019). ZnS and ZnO nanocomposite for near white light tuning applications. Paper presented at the 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP).
Zhao, J., Song, P., Feng, L., Wang, X., & Tang, Z. (2023). Theoretical insights into atomic-electronegativity-regulated ESIPT behavior for B-bph-fla-OH fluorophore. Journal of Molecular Liquids, 380, 121763.
Zhu, X., Defaÿ, E., Aïd, M., Ren, Y., Zhang, C., Zhu, J., . . . Xiao, D. (2013). Preferential growth and enhanced dielectric properties of Ba0. 7Sr0. 3TiO3 thin films with preannealed Pt bottom electrode. Journal of Physics D: Applied Physics, 46(10), 105301.
Zhu, Y., Yamazaki, T., Chen, Z., Hirose, Y., Nakao, S., Harayama, I., . . . Hasegawa, T. (2020). High‐Mobility and Air‐Stable Amorphous Semiconductor Composed of Earth‐Abundant Elements: Amorphous Zinc Oxysulfide. Advanced Electronic Materials, 6(1), 1900602.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohammed H. Khalil , Raghad Y. Mohammed, Mohammed A. Ibrahem
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.