EFFICIENT SYNTHESIS OF ZNO AS AN ELECTRODE OF PIEZOELECTRIC NANOGENERATORS

Authors

  • Ribar A. Salh Department of Physics, College of Science, University of Duhok, Kurdistan Region, Iraq
  • Mohammed A. Ibrahem Department of Physics, College of Science, University of Duhok, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2024.12.1.1205

Keywords:

Piezoelectric, Zinc Oxide, Nanorods, Nanogenerators, Chemical Bath Deposition

Abstract

Piezoelectric nanogenerators (NGs) hold immense promise as self-powered devices for harvesting mechanical energy from the environment. This study introduces an efficient and scalable synthesis method for zinc oxide (ZnO) nanorods, a pivotal material in piezoelectric nanogenerators (NGs), with several key results. A Chemical Bath Deposition technique is employed, optimizing parameters such as growth time, temperature, and precursor concentrations to achieve well-aligned and high-quality ZnO nanorods. The structural and morphological characteristics of the synthesized nanorods are systematically investigated using advanced characterization techniques. The synthesized ZnO nanorods exhibit an average length of 400nm, demonstrating their slender shape. Furthermore, the study determines an energy gap value of 3.5 eV for multilayer zinc oxide thin films, indicating the transition from the valence band to the conduction band. Notably, thermal annealing at 500°C leads to a substantial increase in average output voltage, reaching 1.95 V, a fourfold improvement compared to as-deposited nanopowders. These findings emphasize the efficiency and potential of the proposed synthesis method and underscore its practical applications in enhancing energy harvesting capabilities for sustainable power generation from mechanical sources in piezoelectric NGs.

References

Alolyan, I., & Simos, T. (2015). Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. Journal of Mathematical Chemistry, 53, 1808-1834.

Amna, T. (2018). Shape-controlled synthesis of three-dimensional zinc oxide nanoflowers for disinfection of food pathogens. Zeitschrift für Naturforschung C, 73(7-8), 297-301.

Ariffin, N. K., Mamat, M., Kamaruzaman, D., Abdullah, M., Parimon, N., Yaakob, M., . . . Mohamed, A. (2023). Metal-doped zinc oxide nanostructures for nanogenerator applications: A review. Materials Today: Proceedings, 75, 51-57.

Aziz, N. S. A., Nishiyama, T., Rusli, N. I., Mahmood, M. R., Yasui, K., & Hashim, A. M. (2014). Seedless growth of zinc oxide flower-shaped structures on multilayer graphene by electrochemical deposition. Nanoscale research letters, 9, 1-9.

Balakrishna, A., Pathak, T. K., Coetsee-Hugo, E., Kumar, V., Kroon, R., Ntwaeaborwa, O., & Swart, H. (2018). Synthesis, structure and optical studies of ZnO: Eu3+, Er3+, Yb3+ thin films: Enhanced up-conversion emission. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 540, 123-135.

Fan, J., Li, T., & Heng, H. (2014). Hydrothermal growth and optical properties of ZnO nanoflowers. Materials Research Express, 1(4), 045024.

Fan, J., Li, T., & Heng, H. (2016). Hydrothermal growth of ZnO nanoflowers and their photocatalyst application. Bulletin of Materials Science, 39, 19-26.

Fan, Z., & Lu, J. G. (2005). Zinc oxide nanostructures: synthesis and properties. Journal of nanoscience and nanotechnology, 5(10), 1561-1573.

Gil, M., Manzaneque, T., Hernando‐García, J., Ababneh, A., Seidel, H., & Sánchez‐Rojas, J. L. (2013). Multimodal characterisation of high‐Q piezoelectric micro‐tuning forks. IET Circuits, Devices & Systems, 7(6), 361-367.

Hadi, W. A., Shur, M. S., & O’Leary, S. K. (2014). Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: an updated and critical review. Journal of Materials Science: Materials in Electronics, 25, 4675-4713.

Haq, B. U., Ahmed, R., & Goumri-Said, S. (2014). DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications. Solar energy materials and solar cells, 130, 6-14.

Ji, J., Yang, C., Shan, Y., Sun, M., Cui, X., Xu, L., . . . Luo, D. (2023). Research Trends of Piezoelectric Nanomaterials in Biomedical Engineering. Advanced NanoBiomed Research, 3(1), 2200088.

Kaur, J., Singh, H., & Singh, A. (2020). Fabrication and investigation of zinc oxide nanoflowers‐based piezoelectric nanogenerator. IET Circuits, Devices & Systems, 14(4), 477-483.

Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide—from synthesis to application: a review. Materials, 7(4), 2833-2881.

Krishnakumar, T., Jayaprakash, R., Pinna, N., Singh, V., Mehta, B., & Phani, A. (2009). Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures. Materials Letters, 63(2), 242-245.

Krithika, G., Saraswathy, R., Muralidhar, M., Thulasi, D., Lalitha, N., Kumararaja, P., . . . Jayavel, R. (2017). Zinc oxide nanoparticles—Synthesis, characterization and antibacterial activity. Journal of nanoscience and nanotechnology, 17(8), 5209-5216.

Kumar, K. M., Mandal, B. K., Naidu, E. A., Sinha, M., Kumar, K. S., & Reddy, P. S. (2013). Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 171-174.

Mavundla, S., Malgas, G., Motaung, D., & Iwuoha, E. (2012). Synthesis of flower‐like zinc oxide and polyaniline with worm‐like morphology and their applications in hybrid solar cells. Crystal Research and Technology, 47(5), 553-560.

Öztürk, S., Kılınç, N., Taşaltın, N., & Öztürk, Z. Z. (2012). Fabrication of ZnO nanowires and nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 44(6), 1062-1065.

Paino, I. M., J. Gonçalves, F., Souza, F. L., & Zucolotto, V. (2016). Zinc oxide flower-like nanostructures that exhibit enhanced toxicology effects in cancer cells. ACS Applied Materials & Interfaces, 8(48), 32699-32705.

Parwani, S., Dubey, P., Dixit, R., & Kaurav, N. (2019). XRD and FTIR studies of zinc doped nickel oxide compounds. Paper presented at the AIP Conference Proceedings.

Price, A. E., & NJ, C. R. C. S. (1971). PBI Tow Manufacturing Methods.

Raghavendran, S., Umapathy, M., & Karlmarx, L. R. (2018). Supercapacitor charging from piezoelectric energy harvesters using multi‐input buck–boost converter. IET Circuits, Devices & Systems, 12(6), 746-752.

Rezaei, R., Foroughi, M. M., Beitollahi, H., Tajik, S., & Jahani, S. (2019). Synthesis of lanthanium-doped ZnO nanoflowers: Supported on graphite screen printed electrode for selective and sensitive detection of hydrochlorothiazide. International Journal of Electrochemical Science, 14(2), 2038-2048.

Rihtnesberg, D. B., Almqvist, S., Wang, Q., Sugunan, A., Yang, X., Toprak, M. S., . . . Göthelid, M. (2011). ZnO nanorods/nanoflowers and their applications. Paper presented at the The 4th IEEE International NanoElectronics Conference.

Saharan, C. (2022). Enhanced Visible Light Transmittance and Phase Transition in ZnO/VO2/AL2O3 Bilayer Thin Film for Energy Efficient Smart Windows. Paper presented at the Electrochemical Society Meeting Abstracts 242.

Shang, T. M., Sun, J. H., Zhou, Q. F., & Guan, M. Y. (2007). Controlled synthesis of various morphologies of nanostructured zinc oxide: flower, nanoplate, and urchin. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 42(10), 1002-1006.

Sharma, S., Dalal, V. S., & Mahajan, V. (2016). Synthesis of Zinc oxide nano flower for photovoltaic applications. Materials Today: Proceedings, 3(6), 1359-1362.

Shinde, S., Shinde, P., Bhosale, C., & Rajpure, K. (2011). Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 104(3), 425-433.

SHUKLA, D., Sharma, A. K., & Maurya, A. (2022). Studies on performance and emission analysis of a CI engine using zinc oxide nanoparticles with biodiesel.

Subramani, K., & Sathish, M. (2019). Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications. Materials Letters, 236, 424-427.

Sugunan, A., Warad, H. C., Boman, M., & Dutta, J. (2006). Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine. Journal of Sol-Gel Science and Technology, 39, 49-56.

Sun, Y., Zheng, Y., Wang, R., Fan, J., & Liu, Y. (2021). Direct-current piezoelectric nanogenerator based on two-layer zinc oxide nanorod arrays with equal c-axis orientation for energy harvesting. Chemical engineering journal, 426, 131262.

Tab, A., Abderrahmane, A., Bakha, Y., Hamzaoui, S., & Zerdali, M. (2019). Investigation on the optical transmission in UV range of sol-gel spin coated zinc oxide nanofilms deposited on glass. Optik, 194, 163073.

Tajik, S., Beitollahi, H., & Aflatoonian, M. R. (2019). A novel dopamine electrochemical sensor based on La3+/ZnO nanoflower modified graphite screen printed electrode. Journal of Electrochemical Science and Engineering, 9(3), 187-195.

Umetsu, M., Mizuta, M., Tsumoto, K., Ohara, S., Takami, S., Watanabe, H., . . . Adschiri, T. (2005). Bioassisted room‐temperature immobilization and mineralization of zinc oxide—The structural ordering of ZnO nanoparticles into a flower‐type morphology. Advanced Materials, 17(21), 2571-2575.

Wahab, R., Hwang, I., Kim, Y.-S., & Shin, H.-S. (2011). Photocatalytic activity of zinc oxide micro-flowers synthesized via solution method. Chemical engineering journal, 168(1), 359-366.

Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. Journal of physics: condensed matter, 16(25), R829.

Xie, L., Xu, Y., & Cao, X. (2013). Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 107, 245-250.

Yang, R.-T., Yu, H.-Y., Song, M.-L., Zhou, Y.-W., & Yao, J.-M. (2016). Flower-like zinc oxide nanorod clusters grown on spherical cellulose nanocrystals via simple chemical precipitation method. Cellulose, 23, 1871-1884.

Yuan, J., Wang, X., Zhou, H., Li, Y., Zhang, J., Yu, S., . . . Liu, L. (2020). Comparison of sample preparation techniques for inspection of leaf epidermises using light microscopy and scanning electronic microscopy. Frontiers in Plant Science, 11, 133.

Измайлов, А. Ю., Голубкович, А. В., Павлов, С. А., Павлова, И. Ю., Потапов, А. В., Марин, Р. А., & Дадыко, А. Н. (2017). Способ осциллирующей сушки зерна.

Downloads

Published

2024-02-04

How to Cite

Salh, R. A., & Ibrahem, M. A. (2024). EFFICIENT SYNTHESIS OF ZNO AS AN ELECTRODE OF PIEZOELECTRIC NANOGENERATORS. Science Journal of University of Zakho, 12(1), 50–56. https://doi.org/10.25271/sjuoz.2024.12.1.1205

Issue

Section

Science Journal of University of Zakho