MORPHOLOGICAL AND OPTICAL PROPERTIES OF ZNO NANORODS GROWN ONTO SILICON SUBSTRATES: THE IMPACT OF GROWTH TEMPERATURE

Authors

  • Omar F. Farhat Department of Physics Education, Faculty of Education, Tishk International University (TIU), Erbil, KRG, Iraq
  • Muhammad Husham Department of Physics Education, Faculty of Education, Tishk International University (TIU), Erbil, KRG, Iraq
  • Azeez A. Barzinjy Scientific Research center, Soran University, Kurdistan Region, Iraq
  • Abbas M. Selmanan Department of Pharmacognosy and Medicinal plants, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
  • A. A. Abuelsamen Medical Imaging and Radiography Department, Aqaba University of Technology, Aqaba, Jordan
  • Mohamed Bououdina Department of Mathematics and Sciences, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
  • Asad A. Thahe Department of Medical Physics, College of applied science, University of Fallujah, Fallujah, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2024.12.4.1346

Keywords:

Growth temperature, optical properties, silicon substrates, structural, ZnO NRs

Abstract

ZnO nanorods (NRs) have been successfully grown onto Silicon (Si) substrates. The properties of ZnO NRs have been characterized using field emission scanning microscopy, Photoluminescence, and X-ray diffraction. Results showed that the growth temperature (85, 90, 95, and 100oC) significantly affected the properties of ZnO NRs. At a temperature of 95oC, the structural and optical properties have been significantly enhanced, besides, well-aligned ZnO NRs have been obtained. With the rise of growth temperature from 85 to 95oC, the crystallite size increases (52 to 94 nm), and the near band edge emission to deep level emission ratio is enhanced. Besides, the aspect ratio for the prepared ZnO NRs has increased significantly reaching 19.42. This study emphasizes the significance of growth temperature in tunning the structural and microstructural and subsequently the physicochemical properties of ZnO NRs by fine control of the growth temperature. Moreover, a facile and cost-efficient method for fabricating ZnO nanorods for electronic applications based on silicon is presented in this study.

References

Ahmed F.A., Sabah M. A., Azeez A. B., Samir M. H., Naser M. A., Munirah A. A. (2021). Fabrication and Characterization of High-Quality UV Photodetectors Based ZnO Nanorods Using Traditional and Modified Chemical Bath Deposition Methods. Nanomaterials 11, 677. https://doi.org/10.3390/nano11030677

Altissimo, M. (2010). E-Beam lithography for micro-/nanofabrication. Bio microfluidics, 4, 026503. https://doi.org/10.1063/1.3437589

Bouhssira N., Abed S., Tomasella E., Cellier J., Mosbah A., Aida M. S., & Jacquet M. (2006). Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation. Applied Surface Science, 252, 5594-5597.https://doi.org/10.1016/j.egypro.2012.07.008

Fan D., Zhang R., & Wang X. (2010). Synthesis and ultraviolet emission of aligned ZnO rod-on-rod nanostructures. Solid state communications, 150, 824-827. https://doi.org/10.1016/j.ssc.2010.02.013

Farhat O. F., Husham M., Bououdina M., Abuelsamen A. A., Oglat A. A., & Mohammed N. J. (2021). Tape-based novel ZnO nanoaggregates photodetector. Sensors and Actuators A: Physical, 332, 113210. https://doi.org/10.1016/j.sna.2021.113210

Farhat O. F., Hisham M., Bououdina M., Oglat A. A., & Mohammed N. J. (2020). Growth of ZnO nanostructures by wet oxidation of Zn thin film deposited on heat-resistant flexible substrates at low temperature. Semiconductors, 54, 1220-1223. https://doi.org/10.1134/S1063782620100103

Farhat O. F., Husham M., ALDelfi H. H., & Bououdina M. (2023). Tuning the diameter and optical properties of ZnO nanorods grown onto flexible substrates at different temperatures. Journal of Crystal Growth, 607, 127115. https://doi.org/10.1016/j.jcrysgro.2023.127115

Farhat O. F., Halim M. M., Ahmed N. M., Oglat A. A., Abuelsamen A. A., Bououdina M., & Qaeed M. A. (2017). A study of the effects of aligned vertically growth time on ZnO nanorods deposited for the first time on Teflon substrate. Applied Surface Science, 426, 906-912. https://doi.org/10.1016/j.apsusc.2017.07.031

Feng W., Wang B., Huang P., Wang X., Yu J., & Wang C. (2016). Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Materials Science in Semiconductor Processing, 41, 462-469. https://doi.org/10.1016/j.mssp.2015.10.017

Gu P., Zhu X., & Yang D. (2020). Vertically aligned ZnO nanorods arrays grown by chemical bath deposition for ultraviolet photodetectors with high response performance. Journal of Alloys and Compounds, 815, 152346. https://doi.org/10.1016/j.jallcom.2019.152346

Guo L., Zhang H., Zhao D., Li B., Zhang Z., Jiang M., & Shen D. (2012). High responsivity ZnO nanowires-based UV detector fabricated by the dielectrophoresis method. Sensors and Actuators B: Chemical, 166, 12-16. https://doi.org/10.1016/j.snb.2011.08.049

Hu A., Wu F., Liu J., Jiang J., Ding R., Li X. & Huang X. (2010). Density-and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance. Journal of Alloys and Compounds, 507, 261-266. https://doi.org/10.1016/j.jallcom.2010.07.173

Hassan J.J., Mahdi M. A., Kasim,S. J., Ahmed N. M., Abu Hassan H., & Hassan Z. (2012). High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector. Applied Physics Letters, 101(26). https://doi.org/10.1063/1.4773245

Husham M., & Hassan Z. (2015). Synthesis of nanocrystalline CdS thin films via microwave-assisted chemical bath deposition for highly photosensitive and rapid response photodetectors. Journal of Nanoelectronics and Optoelectronics, 10, 783-789. https://doi.org/10.1016/j.sna.2015.04.010

Husham M., Hassan Z., Selman A.M., Allam N.K. (2015). Microwave-assisted chemical bath deposition of nanocrystalline CdS thin films with superior photodetection characteristics, Sensors and Actuators A 230, 9–16. https://doi.org/10.1016/j.sna.2015.04.010

Jaqsi M.K., Kareem A., & Abdullrahman A. (2023). Investigating the impact of growth temperatures on the ZnO nanorods properties grown with simplest spray technique. Scientific journal of the University of Zakho, 11, 112– 118. https://doi.org/10.25271/sjuoz.2023.11.1.1072

Lim Y.H., Choi H-J, & Lee J. (2022). Fabrication of nanostructures on a large-area substrate with a minimized stitch error using the step-and-repeat nanoimprint process. Materials, 15, 6036. https://doi.org/10.3390/ma15176036

Mosalagae K., Murape D. M., & Lepodise L. M. (2020). Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers. Heliyon, 6, e04458. https://doi.org/10.1016/j.heliyon.2020.e04458

Mohammed H. K., Raghad Y. M., Mohammed A. I. (2023). Influence of annealing temperature on Zinc Oxysulfide thin films properties deposited by thermal spray technique. Scientific journal of the University of Zakho, 11, 600-605. https://doi.org/10.25271/sjuoz.2023.11.4.1192

Selman A. M., Hassan Z., & Husham M. (2014). Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values. Measurement, 56, 155-162. https://doi.org/10.1016/j.measurement.2014.06.027

Sherwan M.I., Sabah M.A. (2023). The effect of calcination temperature on the properties of ZnO Nanoparticles synthesized by using leaves extacts of Pinus Brutia tree. Scientific journal of the University of Zakho, 11, 286–297. https://doi.org/10.25271/sjuoz.2023.11.2.1087

Woong L., Jeong M. C., & Myoung J. M. (2004). Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation. Acta Materialia, 52, 3949-3957. https://doi.org/10.1016/j.actamat.2004.05.010

Zhang Z., Wang S. J., Yu T., & Wu T. (2007). Controlling the growth mechanism of ZnO nanowires by selecting catalysts. The Journal of Physical Chemistry C, 111, 17500-17505. https://pubs.acs.org/doi/10.1021/jp075296a

Downloads

Published

2024-10-31

How to Cite

Farhat, O. F., Husham, M., Barzinjy, A. A., Selmanan, A. M., Abuelsamen, A. A., Bououdina, M., & Thahe, A. A. (2024). MORPHOLOGICAL AND OPTICAL PROPERTIES OF ZNO NANORODS GROWN ONTO SILICON SUBSTRATES: THE IMPACT OF GROWTH TEMPERATURE. Science Journal of University of Zakho, 12(4), 450–455. https://doi.org/10.25271/sjuoz.2024.12.4.1346

Issue

Section

Science Journal of University of Zakho