WORTHY MICROPROPAGATION PROTOCOLS OF SEVEN CULTIVARS OF POMEGRANATE (PUNICA GRANATUM L.) CULTIVARS IN THE PROVINCE OF DUHOK, KURD ISTAN RIGION OF IRAQ.

Authors

  • Lara D. Esho Biology Department, College of Science, University of Duhok, Duhok Kurdistan Region, Iraq
  • Gharbia H. Danial Scientific Research Center, College of Science, University of Duhok, Duhok Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2023.11.4.1162

Keywords:

Punica granatum L., WPM, MS, BAP, Antibacterial activity, NAA, Punica granatum L., WPM, MS, BAP, IBA, NAA, pomegranate micropropagation

Abstract

An efficient attempt was conducted to increase the mass production of seven local cultivars of pomegranate (Punica granatum L.) Masafik, Melisse, Radisho, Armishte, Diala, Halapja, and Dwarf pomegranate cultured in the Kurdistan region of Iraq from October 2021 to February 2023. Micropropagation technique was applied using eight combinations of plant growth regulators (PGRs) added to two media (MS and WPM). The results indicated that immersing explants in 70% Ethyl alcohol (EtOH) for (2 minutes) followed by immersion in (2.5%) Sodium Hypochlorite (NaOCl) plus 3 drops of tween 20 for 13 mins. was the more suitable combination for explant sterilization. MS and WPM media salts supplemented together with eight combinations of PGRs were carried out to evaluate the more suitable combination for the initiation stage. The obtained data clarified that the ½ strength of the MS medium (1/2 MS) supplemented with 0.5 BAP plus 0.5 mg/l Kinetin increases the pomegranate explant initiation response percentage. WPM basal medium was the preferred media to be used in the multiplication stage. The impact of different levels and protocols of Cytokinins, Auxins, and Gibberellins were investigated by eight protocols including using BAP, GA3, and adenine sulfate. The outcomes indicated that adding both concentrations of BAP (0.5 and 1.0 mg/l) separately supported by GA3 and adenine sulfate in amounts of (0.3 and 30 mg/l) respectively again were the most suitable protocol that affected the multiplication of regenerated shoots when compared to using BAP alone. Valuable results were found in rooting response after 6 weeks by using ½ strength of MS media along with two levels of Auxins (NAA, and IBA). Moreover, the visual observation records that around 85-90% of rooted cultures were successfully acclimatized by transferring the cultures from in vitro to the ex-vitro environment. Finally, Dwarf cultivars exceed all the other cultivars in studded parameters.

References

Abeyaratneb, W. & Lathiff, M. (2002). In-vitro propagation of “Rathambala” (Musa AAA) and the Occurrence of Phenotypic Variations in the Pseudostem. Annals of the Sri Lanka (LKA), 4, 191-197.

Al-Rifae’e, M. A. T. & S. A. Al-Shobaki. (2002). Twenty-one-century techniques for plant improvement by tissue culture. Cairo: Dar Al-Fikr Al-Arabi. (In Arabic).

Bachake, S.; Jadhav, V. B.; Deshpade, P.P.; Tele, A.A.; Banda, M. A.; Adki, V. S.; Gopika, M. K.; Karanjule, P. G.; Birajdar, S. B.; Karwa, N. N.; Mundhewadikar, D. M. & Singh, N. V. (2019). Standardization of in vitro propagation protocol for pomegranate cv. Super Bhagwa. Journal of Pharmacognosy and Phytochemistry, 8(3):2548-2553.

Baghdad Abadi, Z.; Ali Abad, K. K. & Saravi, A. T. (2020). Comparison of different culture media and hormonal concentrations for in vitro propagation of pomegranate. International Journal of Fruit Science, 20(53):51721-51728.

Baraldi R., Rossi F. & Lercari B. (1988). In vitro shoot development of Prunus GF 655-2: interaction between light and benzyladenine. - Physiol. Plant. 74: 440-443.

Choudhary, R.; Jakhar, M.; Kumar, R.; Shekhawat, S. & Choudhary, S. (2022). In vitro shoot proliferation from different explants in pomegranate (Punica granatum L.). Biological Forum-An International Journal, 14(2):97-102.

Danial, G.H.; Ibrahim, D. A.; Yousef, A. N. & Elyas, S.B. (2019). Rapid protocol of Aloe vera in vitro propagation. Iraqi Journal of Agricultural Sciences, 50(5):1377-1382.

Danial, G.H.; Ibrahim, D.A. & Song, G.Q. (2021). Agrobacterium-mediated transformation of two tomato cultivars (Lycopersicon esculentum Mill.) cv. Sandra and Rocky. Iraqi Journal of Agriculture Sciences, 52(3):745-755.

Desai, P.; Patil, G.; Dholiva, B.; Desai, S.; Patel, F. & Narayanan, S. (2018). Development of an efficient micropropagation protocol through axillary shoot proliferation for pomegranate variety, Bhagwa, Annals of Agrarian Science, 16(4):444-450.

Drazeta, L. (1997). Pomegranate (Punica granatum L.) propagation by in vitro method of tissue culture. Review Research Work at Faculty of Agriculture, Belgrade 42(1):49-59.

Duncan, D.B. (1955). Multiple ranges and multiple F tests. Biometrics. 11: 1-42. SPSS (2019). Statistical Package for Social Sciences, Ver. 26, User’s guide, IBM publications, USA.

Eshaghi Sanayi, T.; Mehrjerdi, M. Z. & Sharif, A. (2020). Effect of medium, iron-chelating agent and plant growth regulator on micropropagation of pomegranate (Punica granatum L.) Plant Prod., 43(2):309-322.

Gonbad, R. A.; Sinniah, U. R.; Aziz, M. A. & Mohamad, R. (2014). Influence of cytokinins in combination with GA3 on shoot multiplication and elongation of tea clone Iran 100 (Camellia sinensis L.) O. Kuntze. Science Word Journal, Volume 2014, P. 9.

Guranna P. Hosmani I. Sathyanarayana R. Hegde R. &Hipparagi, K. (2017). Micropropagation in pomegranate (Punica granatum L.) cv. Bhagwa through indirect organogenesis and assessment of genetic fidelity by RAPD marker. Biotechnology Journal International. 20: 1-8.

Hatzilazarou, S., A. S. Grammatikos, H.; Rifaki, N. & Ralli, P. (2003). Rooting in vitro and acclimatization of myrtle communis micro cutting. Acta. Hortic., 616: 259-264.

Jones O.P. (1985). The role of growth regulators in the propagation in vitro (micropropagation) of temperate fruit trees. In: Menhenett R., Jackson M.B. (eds.), Growth Regulators in Horticulture, Conference Proceedings, 1-3 April, University of Reading, UK.

Kabir, M. H.; Das, P.; Mamun, A. N.; Islam, M. M. & Islam, A. (2021). In vitro micropropagation of pomegranate (Punica granatum L.) derived from cotyledon. Plant Tissue Cult. and Biotech. 31(1): 61-69.

Kanwar K, Joseph, J. & Deepika, R. (2010). Comparison of in vitro regeneration pathways in Punica granatum L. Plant cell Tiss. Organ cult. 100: 199-207.

Khosh-Khui, M.; Shekafandeh A. & Azarakhsh, H. (1984). Micropropagation of myrtle. Sci. Hortic., 22(1-2): 139-146.

Kumar, R.; Jakhar, M.; Verma, R. & Jat, H. (2017). Pomegranate Micropropagation: A Review. Int. J Pure App. Biosci2017;5(5):1138-149.

Lloyd, G. & McCown, B. (1980). Commercial-feasible micro propagation of mounta in laurel, kalimia litifolia by use of shoot – tip culture. Int. plant prop. Soc. 30:421-427.

Maheswari, K. U.; Rajasekhar, M.; Swamy, D.; Sudhakar, P. & Suneetha, D. S. (2023 a). In vitro propagation studies in pomegranate (Punica granatum L.) using nodal explant. The Pharma Innovation Journal, 12(3): 4148-4153.

Maheswari, K. U.; Rajasekhar, M.; Swamy, D.; Sudhakar, P. & Suneetha, D. S. (2023 b). Effect of growth regulators on shoot proliferation and root development in micropropagation of pomegranate (Punica granatum L.). Pharma Innovation Journal, 12(3): 36-41.

Mohammed, A.K. & M.A. Al-Younis (1991). Fundamentals of Plant Physiology (3rd Part), College of Agriculture, Baghdad University, Iraq, (In Arabic).

Mulaei, S.; Jafaria, A.; Shirmardia, M. & Kamalib, K. (2020) Micropropagation of arid fruit, pomegranate, CVS, Malase Yazdi, and, Shirine Shahvar, International Journal of Fruit Science, 20(4):825-836.

Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-479.

Murkute A.A, Patil, S.; Patil, B.N. & Kumari, M. (2002). Micropropagation in pomegranate, callus induction, and differentiation. South Indian Hort. 50: 49-55.

Omura, M. Matsuta, N. Moriguchi, T. & Kazaki ,I. (1987). Adventitious shoot and plantlet formation from cultured pomegranate leaf explants. Hort. Sci. 22: 133-134.

Pal, R.K; Dhinesh Babu K.; Singh N.V; Maity, A.&Gaikwad N. (2014). Pomegranate Research in India – Status and future challenges. Progressive Horticulture;46 (2):184-201.

Patil, V.M.; Dhande, G. A.; Thigale, D. M. & Rajput, J. C. (2011). Micropropagation of pomegranate (Punica granatum L.) Bhagava cultivar from the nodal explant. African Journal of Biotechnology, 10(79):18130-18136.

Prajwala, K. A.; Subbaramamma, P. & Viswanath, M. (2021). In vitro propagation techniques in pomegranate (Punica granatum L.) A review. The Pharma Innovation Journal, 10(6):1217-1223.

Raj, D & Kamlesh, K. (2008). Efficient in vitro shoot multiplication and root induction enhanced by rejuvenation of microshoots in Punica granatum cv. Kandhari kabuli. National seminar on physiological and biotechnological approaches to improve plant productivity. March 15-18. CCSHAU, Hisar, India. p. 24.

Salehi, H. (2006). Can a general shoot proliferation and rooting medium be used for a number of Carnation cultivars. Afr. J. Biotechnology. 5:25-30.

Singh, P. & Patel, R. M. (2016). Factors affecting in vitro degree of browning and culture establishment of pomegranate. African Journal of Plant Science, 10(2):43-49.

Singh, N. V.; Awachare, C.; Salutgi, U.; Salunkhe, O.; Patil, P. G. & Marathe, R. A. (2022). Micro-propagation and bio-priming in pomegranate imperative for quality planting material. Modern Concepts and Developments in Agronomy, 11(1): 1081-1084.

Singh, S. K.; Singh, A.; Singh, N. V. & Ramajayam, D. (2010). Pomegranate Tissue Culture and Biotechnology. Fruit, Vegetable and Cereal Science and Biotechnology, 4(2):35-44.

Taiz, L. & Zeiger, E. (2002). Plant physiology. Sinauer, Massachusetts, USA.

Valizadeh Kaji, B.; Ershadi, A. & Tohidfar, M. (2013). In vitro

propagation of pomegranate (Punica granatum L.) Cv.

Males Yazdi, Albanian J. agric. Sci. 12(1):1-5.

Downloads

Published

2023-11-01

How to Cite

Esho, L. D., & Danial, G. H. (2023). WORTHY MICROPROPAGATION PROTOCOLS OF SEVEN CULTIVARS OF POMEGRANATE (PUNICA GRANATUM L.) CULTIVARS IN THE PROVINCE OF DUHOK, KURD ISTAN RIGION OF IRAQ. Science Journal of University of Zakho, 11(4), 499–514. https://doi.org/10.25271/sjuoz.2023.11.4.1162

Issue

Section

Science Journal of University of Zakho