THE GREEN APPROACH FOR THE SYNTHESIS OF SOME HYDROQUINOLINE DERIVATIVES COMPOUND VIA HANTZSCH REACTION

Authors

  • Layla Ahmed Othman Department of general science, College of basic education, university of Duhok, Duhok, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2024.12.4.1377

Keywords:

Nanocatalyst, Hantzsch Reaction, Dimedone, Quinoline, Quinoline derivatives

Abstract

Since that hydroquinoline and acridine compounds serve as the fundamental building blocks for the synthesis of many different pharmaceuticals, they are among the most significant classes of chemical compounds that attract the interest of numerous researchers and pharmacologists. Therefore, in this research, The Hantzch reaction was used to prepare these types hydroquinoline and acridine  derivatives of compounds, through the reaction  of a number substituted benzaldehyde with demidone and  α-β diketone substitutes by refluxed with sodium acetate in the presence of iodine and a 1-sulfo-4-(3-(Ferricoxide-Silicondioxide nanopowdertrioxisilyl)propyl) piperazinum-1,4-diphosphate as a catalyst to form 7,7- dimethyl -4,6,7,8-tetrahydroquinoline derivatives which is represented by compounds (1-12) or in the same way by react  benzaldehyde substitutes react with demidone and 4-isopropyl cyclohexanone 1-one to form acridin derivatives  represented by compounds (13 -17). All product compound are characterized using 1H-NMR spectra and the results confirmed the structures.

References

Kouznetsov, V. V., Méndez, L. Y. V., & Gómez, C. M. M. (2005). Recent progress in the synthesis of quinolines. Current Organic Chemistry, 9(2), 141-161.

Willumstad, T. P., Boudreau, P. D., & Danheiser, R. L. (2015). Synthesis of highly substituted quinolines via a tandem ynamide benzannulation/iodocyclization strategy. The Journal of Organic Chemistry, 80(23), 11794-11805. DOI: org/10.1021/acs.joc.5b01648.

Mitamura, T., & Ogawa, A. (2011). Synthesis of 2, 4-diiodoquinolines via the photochemical cyclization of o-alkynylaryl isocyanides with iodine. The Journal of OrganicChemistry, 76(4),11631166.DOI:org/10.1021/jo1021772).

Park, K. H., Joo, H. S., Ahn, K. I., & Jun, K. (1995). One step synthesis of 4-ethoxy-1, 2, 3, 4-tetrahydroquinoline from nitroarene and ethanol: A TiO2 mediated photocatalytic reaction. Tetrahedron letters, 36(33), 5943-5946.DOI: org/10.1016/0040-4039(95)01204-U.

Hamdoon, A. M., & Saleh, M. Y. (2022). Synthesis & biological evaluation of novel series of benzo [f] indazole derivatives. Egyptian Journal of Chemistry, 65(11), 305-312.DOI: 10.21608/EJCHEM.2022.120818.5418

Sabbaghan, M., Yavari, I., Hossaini, Z., & Souri, S. (2010). A Novel One‐Pot Synthesis of Substituted Quinolines. Helvetica Chimica Acta, 93(5), 946-950. DOI: org/10.1002/hlca.200900304.

Motokura, K., Mizugaki, T., Ebitani, K., & Kaneda, K. (2004). Multifunctional catalysis of a ruthenium-grafted hydrotalcite: one-pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and aldol reaction. Tetrahedron letters, 45(31), 6029-6032. DOI: org/10.1016/j.tetlet.2004.06.023.

Sadeek, G. T., Saeed, Z. F., & Saleh, M. Y. (2023). Synthesis and pharmacological profile of hydrazide compounds. Research Journal of Pharmacy and Technology, 16(2),975982.DOI: 10.52711/0974360X.23.

Tong, H., Wang, L., Jing, X., & Wang, F. (2003). “Turn-on” conjugated polymer fluorescent chemosensor for fluoride ion. Macromolecules, 36(8), 2584 2586. DOI: org/10.1021/ma0258612,

Tumambac, G. E., Rosencrance, C. M., & Wolf, C. (2004). Selective metal ion recognition using a fluorescent 1, 8-diquinolylnaphthalene-derived sensor in aqueous solution. Tetrahedron, 60(49),1129311297. DOI: org/10.1016/j.tet.2004.07.053.

Reddy, T. R., Reddy, L. S., Reddy, G. R., Yarbagi, K., Lingappa, Y., Rambabu, D., ... & Pal, M. (2012). Construction of a quinoline ring via a 3-component reaction in water: crystal structure analysis and H-bonding patterns of a 2-aryl quinoline. Green Chemistry, 14(7),1870-1872.DOI: org/10.1039/C2GC35256G.

Safari, J., Banitaba, S. H., & Samiei, S. S. (2009). One-pot synthesis of quinaldine derivatives by using microwave irradiation without any solvent—A green chemistry approach. Journal of chemical sciences, 121, 481-484. DOI: .org/10.1007/s12039-009-0057-0.

Saleh, A., & Saleh, M. Y. (2022). Synthesis of heterocyclic compounds by cyclization of Schiff bases prepared from capric acid hydrazide and study of biological activity. Egyptian Journal of Chemistry, 65(12), 783-792.DOI: 10.21608/ejchem.2022.133946.5904.

Anvar, S., Mohammadpoor-Baltork, I., Tangestaninejad, S., Moghadam, M., Mirkhani, V., Khosropour, A. R., & Kia, R. (2012). Efficient and environmentally-benign three-component synthesis of quinolines and bis-quinolines catalyzed by recyclable potassium dodecatungstocobaltate trihydrate under microwave irradiation. RSC advances, 2(23), 8713-8720. DOI: 10.1039/C2RA20639K.

Zhu, H., Yang, R. F., Yun, L. H., & Li, J. (2010). Facile and efficient synthesis of quinoline-4-carboxylic acids under microwave irradiation. Chinese Chemical Letters, 21(1), 35-38.DOI: org/10.1016/j.cclet.2009.09.012.

Ranu, B. C., Hajra, A., & Jana, U. (2000). Microwave-assisted simple synthesis of quinolines from anilines and alkyl vinyl ketones on the surface of silica gel in the presence of indium (III) chloride. Tetrahedron Letters, 41(4), 531-533. DOI: .org/10.1016/S0040-4039(99)02111-5.

Kulkarni, A., & Török, B. (2010). Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolines. GreenChemistry, 12(5),875878. DOI: org/10.1039/C001076F.

Praveen, C., DheenKumar, P., Muralidharan, D., & Perumal, P. T. (2010). Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis (indolyl) methanes. Bioorganic&medicinalchemistryletters, 20(24),72927296. DOI: org/10.1016/j.bmcl.2010.

Lindner, T., Loktev, A., Altmann, A., Giesel, F., Kratochwil, C., Debus, J., ... & Haberkorn, U. (2018). Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. Journal of Nuclear Medicine, 59(9),14151422. DOI: 10.2967/jnumed.118.23.

Ali, A. H., Saleh, M. Y., & Owaid, K. A. (2023). Mild Synthesis, Characterization, and Application of some Polythioester Polymers Catalyzed by Cetrimide Ionic Liquid as a Green and Eco-Friendly Phase-Transfer Catalyst. Iranian Journal of Catalysis, 13(1). DOI: 10.30495/IJC.2023.1973500.1977

Saleh, M. Y., Al-barwari, A. S., & Ayoob, A. I. (2022). Synthesis of Some Novel 1, 8-Naphthyridine Chalcones asAntibacterialAgents. JournalofNanostructures, 12(3),598606. DOI: 10.22052/JNS.2022.

Saeed, Z. F., & Saleh, M. Y. (2023). Synthesis and biological evolution of novel substituted 1, 2, 4-triazine from sulfanilic acid. Egyptian Journal of Chemistry, 66(1), 555-561.DOI: 10.21608/ejchem.2022.132916.5870.

Saied, S. M., Saleh, M. Y., & Hamdoon, A. M. (2022). Multicomponent synthesis of Tetrahydrobenzo [a] xanthene and Tetrahydrobenzo [a] acridine derivatives using Sulfonated Multi-Walled Carbon Nanotubes as Heterogeneous Nanocatalysts. Iranian Journal of Catalysis, 12(2),189205.DOI:10.30495/IJC.2022.19554.

Raoof, S. A., Ahmed, F. J., Al-barwari, A. S., & Saleh, M. (2022). Synthesis, Characterization, and Biological Activity of Chromium Complexes as Efficient and Novel Catalysts for Direct Synthesis of Carbonyl Compounds from Benzyl/Cycloalkyl Bromides in Water under Aerobic Oxidation. Iranian Journal of Catalysis, 12(1).

Downloads

Published

2024-10-14

How to Cite

Othman, L. A. (2024). THE GREEN APPROACH FOR THE SYNTHESIS OF SOME HYDROQUINOLINE DERIVATIVES COMPOUND VIA HANTZSCH REACTION. Science Journal of University of Zakho, 12(4), 427–435. https://doi.org/10.25271/sjuoz.2024.12.4.1377

Issue

Section

Science Journal of University of Zakho