Bacteriological and Molecular Characterization of Extended Spectrum Β-Lactamases in Clinical Isolates of Klebsiella Pneumoniae Isolated From Kurdistan Region, Iraq.

  • HAVAL MOHAMMED KHALID University of Zakho
  • SAMIRA YOUNIS YOUSIF University of Zakho
  • JALADET M. S. JUBRAEL University of Duhok
Keywords: Klebsiella pneumoniae, ESBLs, SHV, TEM, CTX-M


A total of 275 clinical isolates of Klebsiella pneumoniae were collected from three general hospitals in Duhok, Erbil, and Sulymania, during the period September 2010 to June 2011. The Minimum Inhibitory Concentration (MIC) of these isolates was measured using the Gram-negative susceptibility card (GNC) of Phoenix system. Only 187 ESBL producing K. pneumoniae isolates were detected by this system. These isolates were confirmed as 100% ESBLs producers by the Double Disk Synergy Test (DDST). All 187 K. pneumoniae isolates were 100% resistant to ampicillin, cefazolin, cefepime, ceftriaxone, cefotaxime, cefuroxime, ceftazidime, and aztreonam. These isolates showed different percentages of resistance 81.8%, 68.5%, 65.8%, 52.4%, 50.3%, 34.2%, 25.2%, and 12.3% towards, ampicillin/sulbactam, gentamicin, trimethoprime-sulfamethoxazole, ciprofloxacin, piperacillin-tazobactam, amikacin, amoxicillin-clavulanate, and levofloxacin respectively.  Molecular characterization by PCR was employed using specific primers for three different ESBLs (TEM, SHV, and CTX-M). Results obtained revealed that SHV-type ESBLs were the most common ESBL occurring in 87% of the isolates with phenotypic evidence of ESBLs production. While those for TEM-type and CTX-M-type were 60% and 58% respectively. 

Author Biographies

HAVAL MOHAMMED KHALID, University of Zakho

Dept. of Biology, Faculty of Science, University of Zakho, Kurdistan Region-Iraq.

SAMIRA YOUNIS YOUSIF, University of Zakho

Dept. of Biology, Faculty of Science, University of Zakho, Kurdistan Region-Iraq

JALADET M. S. JUBRAEL, University of Duhok

Scientific Research Centre, Faculty of Science, University of Duhok, Kurdistan Region-Iraq


Ambler, R. P. (1980). The structure of beta-lactamases. Philos Trans. R. Soc. Lond. B. Biol. Sci., 289: 321–331.
Bagley, S. T., Seidler R. J., and Brenner, D. J. (1981). Klebsiella planticola sp. nov.: a new species of Enterobacteriaceae found primarily in non-clinical environments. Curr. Microbiol., 6:105-109.
Bernard, H., Tancrede, C., Livrelli, V., Morand, A., Barthelemy, M. & Labia, R. (1992). A novel plasmid-mediated extended-spectrum betalactamase not derived from TEM- or SHV-type enzymes. J Antimicrob Chemother., 29: 590–592.
Bradford, P. A. (2001). Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 14: 933–951.
Bush, K., Jacoby, G.A., Medeiros, A.A. (1995). A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother., 39: 1211-33
Carattoli, A., Garcia-Fernandez, A., Varesi, P., Fortini, D., Gerardi, S. and Penni, A. (2008). Molecular epidemiology of Escherichia coli producing extended-spectrum ß-lactamases isolated in Rome, Italy. J. Clin. Microbiol. 46:103-108.
Coque, T.M., Baquero, F. and Canton, R. (2008). Increasing prevalence of ESBL producing Enterobacteriaceae in Europe. Eurosurveillance. 13: 47.
Daoud, Z. and Hakime, N.( 2003). Prevalence and susceptibility patterns of extended-spectrum ß-lactamase producing Escherichia coli and Klebsiella pneumoniae in a general university hospital in Beirut, Lebanon. Revista Espanola de Quimioterapia. 16:233-238
Dechen, C., Tsering, S., Das, Luna, A., Ranabir, P., and Takhellambam, S. (2009). Extended Spectrum Beta-lactamase Detection in Gram-negative Bacilli of Nosocomial Origin. J. Glob. Infect. Dis., 2:87–92.
Eckert, C., Gautier, V. & Arlet, G. (2006). DNA sequence analysis of the genetic environment of various blaCTX-M genes. J. Antimicrob. Chemother., 57:14–23.
Hawser, S. P., Bouchillon, S. K., Hoban, D. J., Badal, R. E., Hsueh, P. R. & Paterson, D. (2009). Emergence of high levels of extendedspectrum β-lactamase-producing Gram-negative bacilli in Asia/ Pacific. Antimicrob. Agents Chemother., 53: 3280–3284.
Humeniuk, C., Arlet, G., Gautier, V., Grimont, P., Labia, R. & Philippon, A. (2002). Beta-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother., 46: 3045–3049.
Jacoby, G. (1997). Extended-spectrum β-lactamases and other enzymes providing resistance to oxyimino-β-lactams. Infect. Dis. Clin. North Am., 11: 875- 887.
Kanj, S.S., Corkill, J.E., Kanafani, Z.A., Araj, G.F., Hart, C.A., Jaafar, R. and Matar, G.M. (2008) Molecular characterisation of extended spectrum β-lactamase-producing Escherichia coli and Klebsiella spp. isolates at a tertiary-care centre in Lebanon. Eur. J. Clin. Microbiol. Infect. Dis., 14: 501-504
Kim, K.Y., Kim, T.U., and Baik, H. S. (2006). Characterization of Extended Spectrum β-Lactamase Genotype TEM, SHV, and CTX-M producing Klebsiella pneumoniae Isolated from Clinical Specimens in Korea.J. Microbiol., 16:889-895.
Knothe, H., Shah, P., Krcmery, V., Antal, M. & Mitsuhashi, S. (1983).Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, 11: 315–317.
Lee, K.K., Kim, S.T., Hong, K.S., Huh, H.J., and Chae, S.L.(2008). Evaluation of the Phoenix automated microbiology system for detecting extended-spectrum beta-lactamase in Escherichia coli, Klebsiella species and Proteus mirabilis. Korean J. Lab. Med., 3:185-90
Lee, S. G., Jeong, S. H., Lee, H., Kim, C. K., Lee, Y., Koh, E., Chong, Y. & Lee, K. (2009). Spread of CTX-M-type extended-spectrum betalactamases among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae from a Korean hospital. Diagn. Microbiol. Infect Dis. 63: 76–80.
Livermore, D. M., Canton, R., Gniadkowski, M., Nordmann, P., Rossolini, G. M., Arlet, G., Ayala, J., Coque, T. M., Kern-Zdanowicz, I. (2007). CTX-M: changing the face of ESBLs in Europe. J. Antimicrob. Chemother.,59: 165–174.
Livermore, DM. (1995). β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev., 8: 557-84.
Machado, E., Coque, T.M., Canton, R., Novais, A., Sousa, J.C., Baquero, F. (2007) High diversity of extended-spectrum ß-lactamases among clinical isolates of Enterobacteriaceae from Portugal. J Antimicrob Chemother., 60:1370-1374.
Matar, G.M, Jaafar, R., Sabra, A., Hart, C.A., Corkill, J.E., Dbaibo, G.S., Araj, G.F ( 2007). First detection andsequence analysis of the blaCTX-M-15 gene in Lebanese isolates of extended-spectrum ß-lactamase producing Shigella sonnei. Ann. Trop. Med. Para.,101:511- 517.
Mohammad, H.M., Al-Agamy, Atef, M. S., and Abdelkader, F.T. (2009). Prevalence and molecular characterization of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Riyadh, Saudi Arabia. Ann. Saudi Med., 29: 253–257.
Monnet, D., and J. Freney. (1994). Method for differentiating Klebsiella planticola and Klebsiella terrigena from other Klebsiella species. J. Clin. Microbiol., 32:1121-1122.
Paterson, D. L. & Bonomo, R. A. (2005). Extended-spectrum beta lactamases:a clinical update. Clin Microbiol. Rev., 18: 657–686.
Rupp, M. and Fey, P. (2003). Extended Spectrum β-Lactamase (ESBL)-Producing Enterobacteriaceae. Adis. International Limited. 63: 353-365.
Tofteland, S., Haldorsen, B., Dahl, K.H., Simonsen, G.S., Steinbakk, M., and Walsh, T.R. (2007). Effects of phenotype and genotype on methods for detection of extended-spectrum ß-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J. Clin. Microbiol., 45:199-205.
How to Cite
KHALID, H., YOUSIF, S., & JUBRAEL, J. (2013). Bacteriological and Molecular Characterization of Extended Spectrum Β-Lactamases in Clinical Isolates of Klebsiella Pneumoniae Isolated From Kurdistan Region, Iraq. Science Journal of University of Zakho, 1(1), 158-163. Retrieved from
Science Journal of University of Zakho