Synthesis and Characterization of Some New Nitrones Derivatives and Screening their Biological Activities

Authors

  • Jihad Haji Mohammed Dept. of Chemistry, Faculty of Science, University of Soran, Kurdistan Region, Iraq
  • Nabaz Abdulmajeed Mohammad Salih Dept. of Chemistry, Faculty of Science, University of Soran, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2022.10.4.1096

Keywords:

Nitro Compound Derivatives, Phenylhydroxylamines, Electron Withdrawing Groups, Electron Donating Groups, Nitrones, Biological active compounds

Abstract

Synthetic approached towards the synthesis of some novel nitrones derivatives have been started with reduction of nitrobenzene derivatives as starting material bearing electron withdrawing and electron donating groups to corresponding phenylhydroxylamine in presence of zinc dust as reducing agent in aqueous solution of ammonium chloride (NH4Cl). The prepared phenylhydroxylamine derivatives were reacted with different substituted benzaldehydes to give the target derivatives of nitrone. The structures of the synthesized nitrones were characterized by spectroscopic methods FT-IR, 1H-NMR and 13C NMR. Finally the newly synthesized compounds were screened for their microorganism activities at different concentration, and inhibited growth of Escherichia coli (E. coli) Gram negative, Staphylococcus aureus (S. aureus) Gram positive, and fungi (candida albicans).

Author Biographies

Jihad Haji Mohammed, Dept. of Chemistry, Faculty of Science, University of Soran, Kurdistan Region, Iraq

Dept. of Chemistry, Faculty of Science, University of Soran, Kurdistan Region, Iraq (jhm020h@chem.soran.edu.iq)

Nabaz Abdulmajeed Mohammad Salih, Dept. of Chemistry, Faculty of Science, University of Soran, Kurdistan Region, Iraq

Dept. of Chemistry, Faculty of Science, University of Soran, Kurdistan Region, Iraq (nabazsalih82@gmail.com)

References

Al Adhreai, A., Alsaeedy, M., Farooqui, M., & Al-Timari, U. (2022). regio-and stereoselectivity of 1, 3-dipolar cycloaddition reaction of cinnarizine drug with chiral nitrones, and their antimicrobial activity. ci-stem Journal of Information Technology and Communication Engineering, 1(1), 01-10.

Besson, E., Gastaldi, S., Bloch, E., Zielonka, J., Zielonka, M., Kalyanaraman, B., Aslan, S., Karoui, H., Rockenbauer, A., & Ouari, O. (2019). Embedding cyclic nitrone in mesoporous silica particles for EPR spin trapping of superoxide and other radicals. Analyst, 144(14), 4194-4203.

Cai, B.-G., Li, L., Xu, G.-Y., Xiao, W.-J., & Xuan, J. (2021). Visible-light-promoted nitrone synthesis from nitrosoarenes under catalyst-and additive-free conditions. Photochemical & Photobiological Sciences, 20(6), 823-829.

Deletraz, A., Zéamari, K., Hua, K., Combes, M., Villamena, F. A., Tuccio, B., Callizot, N., & Durand, G. (2020). Substituted α-phenyl and α-naphthlyl-N-tert-butyl nitrones: Synthesis, spin-trapping, and neuroprotection evaluation. The Journal of Organic Chemistry, 85(9), 6073-6085.

Delpierre, G., & Lamchen, M. (1965). Nitrones. Quarterly Reviews, Chemical Society, 19(4), 329-348.

Ferraz, M. C., Mano, R. A., Oliveira, D. H., Maia, D. S., Silva, W. P., Savegnago, L., Lenardão, E. J., & Jacob, R. G. (2017). Synthesis, antimicrobial, and antioxidant activities of chalcogen-containing nitrone derivatives from (R)-citronellal. Medicines, 4(2), 39.

Floyd, R. A., Hensley, K., Forster, M. J., Kelleher‐Anderson, J. A., & Wood, P. L. (2002). Nitrones as neuroprotectants and antiaging drugs. Annals of the New York Academy of Sciences, 959(1), 321-329.

Ibrahim, H., Furiga, A., Najahi, E., Pigasse Hénocq, C., Nallet, J.-P., Roques, C., Aubouy, A., Sauvain, M., Constant, P., & Daffé, M. (2012). Antibacterial, antifungal and antileishmanial activities of indolone-N-oxide derivatives. The Journal of Antibiotics, 65(10), 499-504.

Janzen, E. G., & Blackburn, B. J. (1968). Detection and identification of short-lived free radicals by an electron spin resonance trapping technique. Journal of the American Chemical Society, 90(21), 5909-5910.

Jung, Y., Hong, J. E., Kwak, J.-H., & Park, Y. (2021). Single-Step Approach toward Nitrones via Pyridinium Ylides: The DMAP-Catalyzed Reaction of Benzyl Halides with Nitrosoarenes. The Journal of Organic Chemistry, 86(9), 6343-6350.

Kim, H. K., Yaktin, H. K., & Bambury, R. E. (1970). Nitrones. II.. alpha.-(5-Nitro-2-furyl)-N-cycloalkyl-and-N-alkylnitrones. Journal of Medicinal Chemistry, 13(2), 238-241.

Lino, A., & Deogracious, O. (2006). The in-vitro antibacterial activity of Annona senegalensis, Securidacca longipendiculata and Steganotaenia araliacea-Ugandan medicinal plants. African health sciences, 6(1), 31-35.

Mahieddine, C., Boukhechem, M. S., Zerkout, S., & Zitouni, A. (2016). Synthesis and Microbiological Activities of Novel Acyclic Nitrones. Asian Journal of Chemistry, 28(5), 1027.

Murahashi, S.-I., & Imada, Y. (2019). Synthesis and transformations of nitrones for organic synthesis. Chemical reviews, 119(7), 4684-4716.

Mutlaq, D. Z., Hassan, Q. M., Sultan, H., & Emshary, C. (2021). The optical nonlinear properties of a new synthesized azo-nitrone compound. Optical Materials, 113, 110815.

Salman, H. H. (2019). Antimicrobial evaluation of some new nitrone compounds derived from glyoxal. International Journal of Green Pharmacy (IJGP), 13(3).

Salman, H. H., & Majeed, N. N. (2013). Synthesis, characterization and study of biological activity of some new nitrone and isoxazolidine compounds. J Basrah Res (Sci), 39, 99-111.

Thakur, S., Das, A., & Das, T. (2021). 1, 3-Dipolar cycloaddition of nitrones: synthesis of multisubstituted, diverse range of heterocyclic compounds. New Journal of Chemistry, 45(26), 11420-11456.

West, P. R., & Davis, G. C. (1989). The synthesis of diarylnitrones. The Journal of Organic Chemistry, 54(21), 5176-5180.

Downloads

Published

2022-12-25

How to Cite

Mohammed, J. H., & Mohammad Salih, N. A. (2022). Synthesis and Characterization of Some New Nitrones Derivatives and Screening their Biological Activities. Science Journal of University of Zakho, 10(4), 268–273. https://doi.org/10.25271/sjuoz.2022.10.4.1096

Issue

Section

Science Journal of University of Zakho