DETERMINATION OF SEVERAL IMPORTANT PARAMETERS OF HOLLOW ELECTRODES ABNORMAL GLOW DISCHARGE PLASMA UNDER THE INFLUENCE OF MAGNETIC FIELD AT DIFFERENT GAS PRESSURES
DOI:
https://doi.org/10.25271/sjuoz.2023.11.4.1155Keywords:
glow discharge, optical spectroscopic, plasma parameters, axial magnetic fieldAbstract
This paper investigates the impact of an axial magnetic field on several plasma parameters of hollow electrode argon abnormal glow discharge. The discharge is generated by applying a DC voltage ranging from 0-6KV. By varying the pressure and magnetic field strength (0-25mT), the plasma potential, frequency, and degree of ionization were measured. The plasma potential, frequency, and degree of ionization were evaluated using spectroscopic measurements of the electron temperature and density. The results of the experiment show that the plasma potential decreases as the magnetic field strength increases, while the plasma frequency increases for lower pressure but reaches a constant value for higher pressure due to the increasing number of excitation collisions among the plasma-charged particles. The degree of ionization, determined using the ideal gas law, shows a near-linear relationship with the axial magnetic field at both low and high pressure.
References
A. Qayyum et al., “Characterization of argon plasma by use of optical emission spectroscopy and Langmuir probe measurements,” Int. J. Mod. Phys. B, vol. 17, no. 14, pp. 2749–2759, 2003, doi: 10.1142/S0217979203018454.
S. P. D. C.O. Laux, R.J. Gessman, C.H. Kruger, F. Roux, F. Michaud, “Rotational temperature measurements in air and nitrogen plasmas using the "rst negative system of N,” J. Quant. Spectrosc. Radiat. Transf., vol. 68, no. 4, pp. 473–482, 2001, doi: 10.1016/s0022-4073(00)00083-2.
M. A. Hassouba and N. Dawood, “Study the Effect of the Magnetic Field on the Electrical Characteristics of the Glow Discharge,” Adv. Appl. Sci. Res., vol. 2, no. 4, pp. 123–131, 2011, doi: 10.1002/adma.19950070128.
S. Surzhikov and J. Shang, “Normal glow discharge in axial magnetic field,” Plasma Sources Sci. Technol., vol. 23, no. 5, 2014, doi: 10.1088/0963-0252/23/5/054017.
W. Jiang, J. Tang, Y. Wang, W. Zhao, and Y. Duan, “Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air,” Sci. Rep., vol. 4, pp. 1–6, 2014, doi: 10.1038/srep06323.
S. Gao, S. Chen, Z. Ji, W. Tian, and J. Chen, “DC Glow Discharge in Axial Magnetic Field at Low Pressures,” Adv. Math. Phys., vol. 9193149, pp. 1–8, 2017, doi: 10.1155/2017/9193149.
A. R. Abdirakhmanov, Z. A. Moldabekov, S. K. Kodanova, M. K. Dosbolayev, and T. S. Ramazanov, “Rotation of Dust Structures in a Magnetic Field in a DC Glow Discharge,” IEEE Trans. Plasma Sci., vol. 47, no. 7, pp. 3036–3040, 2019, doi: 10.1109/TPS.2019.2906051.
N. Hazel, J. Orejas, and S. Ray, “Modulation of the Solution-Cathode Glow-Discharge and Solution-Anode Glow Discharge using a Rotating Magnetic Field,” J. Appl. Phys., vol. 129, no. 18, 2021, doi: 10.1063/5.0046922.
M. Rudolph et al., “Influence of the magnetic field on the discharge physics of a high power impulse magnetron sputtering discharge,” J. Phys. D. Appl. Phys., vol. 55, no. 1, 2021, doi: 10.1088/1361-6463/ac2968.
K. P. B. Stephan Renninger, Jan Stein, Maike Lambarth, “An optimized reactor for CO2 splitting in DC atmospheric pressure discharge.” Journal of CO2 Utilization, Volume 58, 2022, pp. 2212–9820, 2022. doi: 10.1016/j.jcou.2022.101919.
P. M. A. Karim, D. S. Mayi, and S. K. Al-Hakary, “Measurement of Some Argon Plasma Parameters Glow Discharge Under Axial Magnetic Field,” Sci. J. Univ. Zakho, vol. 7, no. 4, pp. 158–166, 2019, doi: 10.25271/sjuoz.2019.7.4.628.
S. A. Wissel, A. Zwicker, J. Ross, and S. Gershman, “The use of dc glow discharges as undergraduate educational tools,” Am. J. Phys., vol. 81, no. 9, pp. 663–669, 2013, doi: 10.1119/1.4811435.
C. Schnitter et al., “Effect of low-energy ion assistance on the properties of sputtered ZrB2 films,” Vacuum, vol. 195, no. October 2021, 2022, doi: 10.1016/j.vacuum.2021.110688.
D. C. Seo, T. H. Chung, H. J. Yoon, and G. H. Kim, “Electrostatic probe diagnostics of a planar-type radio-frequency inductively coupled oxygen plasma,” J. Appl. Phys., vol. 89, no. 8, pp. 4218–4223, 2001, doi: 10.1063/1.1354633.
R. Goldston and P. Rutherford, Introduction to Plasma Physics. 1995. doi: 10.1201/9781439822074.
H. A. Hussein, “The Effect of Magnetic Fields on Helium Plasma Parameters,” J. KUFA – Phys., vol. 7, no. 2, pp. 35–39, 2015.
A. Grill, “Cold Plasma Materials Fabrication: From Fundamentals to Applications,” Cold Plasma Mater. Fabr. From Fundam. to Appl., pp. 1–257, 1994, doi: 10.1109/9780470544273.
C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta - Part B At. Spectrosc., vol. 56, no. 6, pp. 619–628, 2001, doi: 10.1016/S0584-8547(01)00172-0.
D. P. Subedi, R. B. Tyata, R. Shrestha, and C. S. Wong, “An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon,” Front. Physics, AIP Conf. Proc., vol. 1588, pp. 103–108, 2014, doi: 10.1063/1.4867673.
A. M. El Sherbini, A. A. S. Al Amer, A. T. Hassan, and T. M. El Sherbini, “Spectrometric Measurement of Plasma Parameters Utilizing the Target Ambient Gas O I & N I Atomic Lines in LIBS Experiment,” Opt. Photonics J., vol. 02, no. 04, pp. 286–293, 2012, doi: 10.4236/opj.2012.24035.
N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (A critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data, vol. 31, no. 3, pp. 819–927, 2002, doi: 10.1063/1.1486456.
W. Luo, X. Zhao, S. Lv, and H. Zhu, “Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy,” Pramana - J. Phys., vol. 85, no. 1, pp. 105–114, 2015, doi: 10.1007/s12043-014-0893-4.
R. W. Coons, S. S. Harilal, M. Polek, and A. Hassanein, “Spatial and temporal variations of electron temperatures and densities from EUV-emitting lithium plasmas,” Anal. Bioanal. Chem., vol. 400, no. 10, pp. 3239–3246, 2011, doi: 10.1007/s00216-011-4792-y.
F. F. Chen, Introduction to Plasma Physics and Controlled Fusion. Volume 1: Plasma Physics. 1984.
M. C. Marconi, J. J. Rocca, J. F. Schmerge, M. Villagran, and F. J. Lehmann, “Effect of a Strong Axial Magnetic Field in the Plasma Recombination and Extreme Ultraviolet Emission from a Highly-Ionized Capillary Discharge,” IEEE J. Quantum Electron., vol. 26, no. 10, pp. 1809–1814, 1990, doi: 10.1109/3.60905.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Pshtiwan M. Karim, Diyar A. Sadiq, Shamo K. Al-Hakary
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.