Distribution of Extended Spectrum Β-Lactamase Genes among Proteus Mirabilis Isolated From Clinical Specimens in Duhok City, Kurdistan Region, Iraq
DOI:
https://doi.org/10.25271/sjuoz.2017.5.1.444Keywords:
Proteus mirabilis, ESBL, PCRAbstract
Extended Spectrum Beta Lactamase-among Proteus mirabilis strains recorded high incidence leaving few therapeutic options of potential infections. The purpose of current study was to assess the prevalence of antibiotic resistance among Extended Spectrum Beta-Lactamases (ESBL) producing P. mirabilis, in addition to molecular characterization of the ESBL gene-types using PCR. All isolates were fully identified, checked for antibiotic susceptibility and ESBL production using double disk synergy phenotypic method. Positive ESBL-producing isolates were subjected to PCR assay using specific primers for detection of CTX-M, TEM, and SHV genes. The majority of the isolates exhibited absolute susceptibility (100%) to both meropenem and ertapenem and high susceptibility (95%) to imipenem, while co-resistance were expressed toward cefotaxime, ceftazidime, ceftriaxone and other non-lactam antibiotics. Out of 37 isolates, 21(57%) were ESBL-producers and using a double-disc synergy test (DDST). Using molecular-based PCR, CTX-M (81%), TEM (57%) and SHV (24%) were determined among ESBL-positive. CTX-M was predominant and circulating among phenotypic multiple resistant strains. Moreover, the coexistence of CTX-M and TEM gene was a more frequent combination. The study highlighted the increasing levels of low antibiotic susceptibility among P. mirabilis harbored ESBL genes at Duhok city and also confirms that a high level of blaCTX-M-positive ESBL isolates is circulating in this area.
References
Ahmad, S.S. and Ali, F.A. (2014). Detection of ESBL, AmpC and metallo beta-lactamase mediated resistance in gram- negative bacteria isolated from women with genital tract infection. European Scientific Journal, 10:193-209.
Alghamdi, A. (2006). Detection of Criteria of Proteus mirabilis isolates from hospital and community-acquired infections and their roles in antibiotic resistance. Egyptian Journal of Medical Microbiology, 15: 55-64.
Al-Haidari, C.H. (2010). Microbiological study of urinary tract infection, Antibiotics susceptibility pattern and extended spectrum beta lactamase prevalence among children in Erbil city. M.Sc. Thesis, College of Medicine, Hawler Medical University-Iraq.
Al-Jubori, S.S.; Hamed, S.L. and Al-Kaabi, M.H. (2012). Determination of genetic factors controlling β-lactamase enzyme related to bla TEM and bla SHV families using the polymerase chain reaction. Iraqi Journal Biotechnology, 2: 377- 388.
Chanal, C.; Bonnet, R.; champs, C. D.; Sirot, D.; Labia, R. and Sirot, J. (2000). Prevalence of β-lactamases among 1,072 clinical strains of Proteus mirabilis: a 2-year survey in a French hospital. Antimicrobial Agents and Chemotherapy, 44: 1930–1935.
Clinical and Laboratory Standards Institute (2006). Performance standards for antimicrobial susceptibility testing; 16th informational supplement. M100-S16. Wayne, PA: Clinical and Laboratory Standards Institute.
Empel, J.; Baraniak, A.; Literacka, E.; Mro´ wka, A.; Fiett, J.; Sadowy, E. (2008). Molecular survey of beta-lactamases conferring resistance to newer beta-lactams in enterobacteriaceae isolates from Polish hospitals. Antimicrobial Agents Chemotherapy, 52: 2449–2454.
Endimiani, A.; Luzzaro, F.; Brigante, G.; Perilli, M.; Lombardi, G. and Amicosante, G. (2005). Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrobial Agents and Chemotherapy, 49: 2598–605.
Hassan, H. and Abdalhamid, B. (2014). Molecular characterization of extended-spectrum beta-lactamase producing Enterobacteriaceae in a Saudi Arabian tertiary hospital. Journal of Infection in Developing Countries, 8:282-288.
Hassan, M.I.; Alkharsah, K.R.; Alzahrani, A.J.; Obeid, O.E.; Khamis, A.H. and Diab, A. (2013). Detection of extended spectrum beta-lactamases-producing isolates and effect of AmpC overlapping. Journal of Infection in Developing Countries, 7: 618-629.
Huang, Y.; Xu, Y.; Wang, Z. and Lin, X. (2014). Antimicrobial resistance and genotype analysis of Extended-Spectrum-β-Lactamase-Producing Proteus mirabilis. Open Journal of Clinical Diagnostics, 4: 57-62.
Hussein, A.A. (2013). Phenotypic detection of Extended Spectrum Beta Lactamase production in P. mirabilis isolation from patients with significant bacteriuria in Najaf province. Kufa Medical Journal, 9:149-156.
Ishii, Y.; Ohno, A.; Taguchi, H.; Imago, S.; Ishiguru, M. and Matsuzwa, H. (1995). Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A, Beta-Lactamase isolated from Escherichia coli. Antimicrobial Agent and Chemotherapy, 39:2269-2275.
Jarjees, R.K. (2006). Bacteriological study of the incidence of genitourinary tract infection in diabetic women in Erbil. M.Sc. Thesis, College of Science, University of Salahaddin-Iraq.
Karisiki, E.; Ellington, M.J.; Pike, R.; Warren, R.E.; Livermore, D.M. and Woodford, N.(2006). Molecular characterization of plasmids encoding CTX-M-15 β-lactamases from Esherichia coli strains in the United Kingdom. Journal of Antimicrobial Chemotherapy, 58:665-668.
Koneman, E.W; Allen, S.D.; Janda, W.M.; Schreckenberger, P.C. and Winn, W.C. (1992). Color Atlas and Textbook of Diagnostic Microbiology. JB: Lippincott. Philadelphia, Washington.
Leverstein-van Hall, M.A.; Box, A.T.; Blok, H.E.; Paauw, A.; Fluit, A.C. and Verhoef, J. (2002). Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant enterobacteriaceae in a clinical setting. Journal of Infectious Diseases, 186:49–56.
Luzzaro, F.; Perilli, M.; Amicosante, G.; Lombardi, G.; Belloni, R.; Zollo, A.; Bianchi, C. and Toniolo, A. (2001). Properties of multidrug-resistant, ESBL producing Proteus mirabilis isolates and possible role of beta-lactam/beta-lactamase inhibitor combinations. International Journal of Antimicrobial Agents, 17:131-135.
Mabilat, C. and Courvalin, P. (1990). Development of oligotyping for characterization and molecular epidemiology of TEM beta-lactamases in members of the family enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 34:2210-2216.
Kaur, M. and Aggarwal, A. (2013). Occurrence of the CTX-M, SHV and the TEM Genes among the Extended Spectrum β-Lactamase Producing isolates of enterobacteriaceae in a Tertiary Care Hospital of North India. Journal of Clinical and Diagnostic Research, 7:642-645.
Tonkic, M.; Mohar, B.; Sisko-Kraljević, K.; Mesko-Meglic, K.; Goić-Barisić, I.; Novak, A.; Kovacić, A. and Punda-Polić, V. (2010). High prevalence and molecular characterization of Extended-Spectrum β-Lactamase-Producing Proteus mirabilis strains in southern Croatia. Journal of Medical Microbiology, 59:1185–1190.
Nakamura, T.; Komatsu, M.; Yamasaki, K.; Fukuda, S.; Miyamoto, Y.; Higuchi, T.; Ono, T.; Nishio, H.; Sueyoshi, N.; Kida, K.; Satoh, K.; Toda, H.; Toyokawa, M.; Nishi, I.; Sakamoto, M.; Akagi, M.; Nakai, I.; Kofuku, T.; Orita, T.; Wada, Y.; Zikimoto, T.; Koike, C.; Kinoshita, S.; Hirai, I.; Takahashi, H.; Matsuura, N. and Yamamoto, Y. (2012). Epidemiology of Escherichia coli, Klebsiella Species, and Proteus mirabilis strains producing Extended-Spectrum β-Lactamases from clinical samples in the Kinki Region of Japan. American Journal of Clinical Pathology, 137: 620-626.
Moghaddam, M. N.; Beidokhti, M. H. ; Jamehdar, S. A. and Ghahraman, M. (2014). Genetic properties of blaCTX-M and blaPER β-lactamase genes in clinical isolates of enterobacteriaceae by polymerase chain reaction. Iranian Journal of Basic Medical Sciences, 17:378-383.
Nijssen, S.; Florijn, A.; Bonten, M.J.; Schmitz, F.J.; Verhoef, J. and Fluit, A.C. (2004). Beta-lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European enterobacteriaceae isolates. International Journal of Antimicrobial Agents, 24:585–591.
Ojdana, D.; Sacha, P.; Wieczorek, P.; Czaban S. ; Michalska, A.; Jaworowska, J.; Jurczak, A. ; Poniatowski, B. and Tryniszewska, E. (2014). The Occurrence of blaCTX-M, blaSHV, and blaTEM Genes in Extended-Spectrum β-Lactamase-Positive Strains of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis in Poland. International Journal of Antibiotics, 44:1-6.
Perilli, M.; Dell'Amico, E.; Segatore, B.; de Massis, M. R.; Bianchi, C.; Luzzaro, F.; Rossolini, G. M.; Toniolo, A.; Nicoletti, G. and Amicosante, G. (2002). Molecular characterization of Extended-Spectrum -L β-Lactamases produced by nosocomial isolates of enterobacteriaceae from an Italian nationwide survey. Journal of Clinical Microbiology, 40:611–614.
Poirel, L.; LeThomas, I.; Naas, T.; Karim, A. and Nordman, P. (2000). Biochemical sequence analyses of GES-1, a novel class A Extended Spectrum β-Lactamase, and the class 1 integron IN52 from Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 44:622-632.
Yun-Tae, K.; Kim, T.U. and Baik, H. S. (2006). Characterization of Extended Spectrum β- Lactamase genotype TEM, SHV and CTX-M producing Klebsiella pneumoniae isolated from clinical specimens in Korea. Journal of Microbiology and Biotechnology, 16:889-895.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Haval M. Khalid, Najim A. Yassin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.