EFFECT OF SOME PHYSIOLOGICAL FACTORS ON XANTHAN PRODUCTION BY LOCALLY ISOLATED AND IDENTIFIED <i>Xanthomonas campestris </i>USING DATE EXTRACT AS A CARBON SOURCE
Abstract
Xanthan gum is a microbial polysaccharide that is used in food, medicinal, and industrial applications due to its rheological properties. Using agricultural waste, such as date extract, as a carbon source is a cost-effective way of increase xanthan production. The purpose of this study was to isolate and identify Xanthomonas campestris from different cruciferous plants, as it causes black rot disease. Out of the 100 original bacterial isolates, 19 were selected for PCR analysis after undergoing biochemical and Gram staining. Using gene-specific amplification, only two isolates were identified as Xanthomonas campestris. Cultivation on potato sucrose peptone agar (PSPA), these verified strains displayed mucoid, convex, and yellow colonies that were suggestive of xanthan gum production. The two strains of bacteria were used to produce xanthan gum and to analyze how changes of sugar concentration, incubation period, and nitrogen source affect the bacterium’s ability to produce xanthan. At the end of each experiment, the residual sugar, final pH, xanthan amount, and Biomass were measured. The highest amount of xanthan gum was yielded in 5% date extract medium after 5 days of incubation using 0.12 % di-ammonium hydrogen phosphate as a nitrogen source, and yeast extract 0.3 %. The yields were 0.54 g/100 ml for strain 1 and 1.02 g/100 ml for strain 2 at a shaking incubator agitation rate of 150 rpm of the shaking incubator. This study highlights the importance of controlling physiological parameters to maximize xanthan production from local microbial resources and of synthesizing xanthan on an industrial scale from date extract.
Full text article
References
Akhtar, M. A. (1989). Xanthomonas campestris pv. Campestris causing black rot in cabbage, 311–313. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20093349545.
Bhat, I. M., Wani, S. M., Mir, S. A., & Masoodi, F. A. (2022). Advances in xanthan gum production, modifications, and its applications. Biocatalysis and Agricultural Biotechnology, 42, 102328. https://doi.org/10.1016/j.bcab.2022.102328.
Cadmus, M. C., Knutson, C. A., Lagoda, A. A., Pittsley, J. E., & Burton, K. A. (1978). Synthetic media for production of quality xanthan gum in 20 liter fermentors. Biotechnology and Bioengineering, 20(7), 1003–1014. https://doi.org/10.1002/bit.260200703.
Carignatto, C. R., Oliveira, K. S., de Lima, V. M., & de Oliva Neto, P. (2011). New culture medium for xanthan production by Xanthomonas campestris pv. campestris. Indian Journal of Microbiology, 51, 283–288. https://doi.org/10.1007/s12088-011-0171-9.
Chen, W. P., & Kuo, T. T. (1993). A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Research, 21(9), 2260. https://doi.org/10.1093/nar/21.9.2260.
De Sousa Costa, L. A., Inomata Campos, M., Izabel Druzian, J., de Oliveira, A. M., & de Oliveira Junior, E. N. (2014). Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity. International Journal of Polymer Science, 2014(1), 273650. https://doi.org/10.1155/2014/273650.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017.
Furtado, I. F., Sydney, E. B., Rodrigues, S. A., & Sydney, A. C. (2022). Xanthan gum: applications, challenges, and advantages of this asset of biotechnological origin. Biotechnology Research and Innovation Journal, 6(1), 0. https://doi.org/10.4322/biori.202205.
Gomashe, A. V., Dharmanik, P. G., & Fuke, P. S. (2013). Optimization and production of xanthan gum by Xanthomonas campestris, NRRL-B-1449 from sugar beet molasses. The International Journal of Engineering and Science, 2(5), 52–55.
Gunasekar, V., Reshm, K. R., Treesa, G., Gowdhaman, D., & Ponnusami, V. (2014). Xanthan from sulphuric acid treated tapioca pulp: Influence of acid concentration on xanthan fermentation. Carbohydrate Polymers, 102, 669–673. https://doi.org/10.1016/j.carbpol.2013.11.006.
Gupta, M., Vikram, A., & Bharat, N. (2013). Black rot—a devastating disease of crucifers: a review. Agricultural Reviews, 34(4), 269–278. https://doi.org/10.5958/j.0976-0741.34.4.012.
Hassanisaadi, M., Vatankhah, M., Kennedy, J. F., Rabiei, A., & Riseh, R. S. (2024). Advancements in xanthan gum: A macromolecule for encapsulating plant probiotic bacteria with enhanced properties. Carbohydrate Polymers, 122801. https://doi.org/10.1016/j.carbpol.2024.122801.
Hu, X., Wang, K., Yu, M., He, P., Qiao, H., Zhang, H., & Wang, Z. (2019). Characterization and antioxidant activity of a low-molecular-weight xanthan gum. Biomolecules, 9(11), 730. https://doi.org/10.3390/biom9110730.
Kassim, M. B. (2011). Production and characterization of the polysaccharide “xanthan gum” by local isolate of the bacteria Xanthomonas campestris. African Journal of Biotechnology, 10(74), 16924–16932. https://doi.org/10.5897/ajb10.973.2.
Kaur, B., Panesar, G., Panesar, P. S., & Bhatia, S. K. (2024). Utilization of agro-industrial by-products for exopolysaccharides production.
In Microbial Exopolysaccharides (113–138). CRC Press. https://doi.org/10.1201/9781003342687.
Kiddane, A. T., & Kim, G. D. (2021). Anticancer and immunomodulatory effects of polysaccharides. Nutrition and Cancer, 73(11–12), 2219–2231. https://doi.org/10.1080/01635581.2020.1861310.
Kongruang, S. (2013). Optimization of xanthan production with Xanthomonas campestris, by response surface methodology. Journal of Food Technology, Siam University, 8(1), 47–59.
Kumar, P., Kumar, B., Gihar, S., & Kumar, D. (2024). Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydrate Research, Mar 5, 109070. https://doi.org/10.1016/j.carres.2024.109070.
Li, Q., Yan, W., Yang, K., Wen, Y., & Tang, J. L. (2012). Xanthan gum production by Xanthomonas campestris pv. campestris, 8004 using cassava starch as carbon source. African Journal of Biotechnology, 11(73), 13809–13813. https://doi.org/10.5897/AJB11.3774.
Li, P., Li, T., Zeng, Y., Li, X., Jiang, X., Wang, Y., Xie, T., & Zhang, Y. (2016). Biosynthesis of xanthan gum by Xanthomonas campestris, LRELP-1 using chicken waste as a sole substrate. Carbohydrate Polymers, 151, 684–691. https://doi.org/10.1016/j.carbpol.2016.06.017.
Lo, Y. M., Tang, S. T., & Min, D. B. (1997). Effect of yeast extract and glucose on xanthan production and cell growth in batch culture of Xanthomonas campestris. Applied Microbial Biotechnology, 47, 689–694. https://doi.org/10.1007/s002530050996.
Makut, M. D., Danladi, N. A., & Ekeleme, I. K. (2024). Optimization of xanthan gum production by Xanthomonas campestris, isolated from cabbage leaves sold in Keffi, Nigeria. International Journal of Research and Innovation in Applied Science, 9(8), 642–650. https://doi.org/10.51584/ijrias.2024.908058.
Mduma, H. S., Mkindi, M., Karani, A., Ngiha, K., Kalonga, J., Mohamed, Y., & Mbega, E. R. (2015). Major signs and symptoms caused by biotic and abiotic agents on plants in tropical Africa. International Journal of Scientific Research, 6, 750–759. https://doi.org/10.21275/ART20164649.
Miranda, A. L., Costa, S. S., Assis, D. D., de Jesus, C. S., Guimarães, A. G., & Druzian, J. I. (2020). Influence of strain and fermentation time on the production, composition, and properties of xanthan gum. Journal of Applied Polymer Science, 137(15), 48557. https://doi.org/10.1002/app.48557.
Moravej, R., Azin, M., & Mohammadjavad, S. (2024). The importance of acetate, pyruvate, and citrate feeding times in improving xanthan production by Xanthomonas citri. Letters in Applied Microbiology, 77(9), ovae078. https://doi.org/10.1093/lambio/ovae078.
Ozdal, M., & Başaran Kurbanoglu, E. (2019). Use of chicken feather peptone and sugar beet molasses as low cost substrates for xanthan production by Xanthomonas campestris, MO-03. Fermentation, 5(1), 9. https://doi.org/10.3390/fermentation5010009.
Park, Y. J., Lee, B. M., Ho-Hahn, J., Lee, G. B., & Park, D. S. (2004). Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequences. *Microbiological Research*, 159(4), 419–423. https://doi.org/10.1016/j.micres.2004.09.002.
Rakshit, P., Giri, T. K., & Mukherjee, K. (2024). Research progresses on carboxymethyl xanthan gum: Review of synthesis, physicochemical properties, rheological characterization and applications in drug delivery. International Journal of Biological Macromolecules, 23, 131122. https://doi.org/10.1016/j.ijbiomac.2024.131122.
Rashidi, A. R., Dailin, D. J., Ramli, S., Hanapi, S. Z., Ibrahim, S. F., & El Enshasy, H. (2023). Variable nitrogen sources effect on Xanthomonas campestris ATCC 13915 ability for xanthan production in culture supplemented with pineapple waste. Bioscience Research, 20(1), 7–12. https://doi.org/10.1007/s00449-023-02870-9.
Sidkey, N. M., Abdelhady, H. M., Galal, G. F., & Aliem, A. S. (2020). Xanthan gum production by Xanthomonas campestris ATCC 13951 as a food thickening agent. Current Science International, 9(4), 565–582. https://doi.org/10.36632/csi/2020.9.4.50.
Singhvi, G., Hans, N., Shiva, N., & Dubey, S. K. (2019). Xanthan gum in drug delivery applications. In Natural polysaccharides in drug delivery and biomedical applications 121–144. https://doi.org/10.1016/B978-0-12-817055-7.00005-4.
Souw, P., & Demain, A. L. (1979). Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459.Applied and Environmental Microbiology, 37(6), 1186–1192. https://doi.org/10.1128/aem.37.6.1186-1192.1979.
Zahović, I., Dodić, J., & Trivunović, Z. (2024). Review and prospects of xanthan application in water contaminants removal. Analecta Technica Szegedinensia, 18(3), 39–48. https://doi.org/10.14232/analecta.2024.3.39-48.
Authors
Copyright (c) 2026 Jomaa Taher Safar and Mustafa Mohammed Haider

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.