USING INFRARED THERMOGRAPHIC TECHNIQUE AS AN ALTERNATIVE TO CONVENTIONAL RECTAL THERMOMETER IN SHEEP

Authors

  • Nizar J. Hussein Environmental Sciences Department, College of Science, University of Zakho, Kurdistan Region of Iraq
  • Rekesh S. Habib Animal Production Department, College of Agricultural Engineering Sciences, University of Duhok, Kurdistan Region of Iraq
  • Fatah M. Khalaf Animal Production Department, College of Agricultural Engineering Sciences, University of Duhok, Kurdistan Region of Iraq.
  • Rana M. Fazal Department of Zoology, Ghazi University, Dera Ghazi Khan
  • Muhammad Owais Department of Zoology, Emerson University, Multan, Pakistan

DOI:

https://doi.org/10.25271/sjuoz.2025.13.1.1446

Keywords:

Infrared, Eye Temperature, Thermal Imaging, Sheep, Rectum

Abstract

This research was established to assess the precision of the infrared (IR) camera and thermometer in measuring different body regions of sheep. This study was undertaken in the animal farm at the College of Agricultural Engineering Sciences, University of Duhok, Kurdistan Region of Iraq. The temperature was measured from the rectum using a digital thermometer. At the same time, the peripheral temperatures were measured from the ears, muzzle (MUZ), inner thigh (IT), inguinal region (ING), rectum, vulva, and five areas of the eyes, including nasal conjunctiva (NC), nasal limbus (NL), center cornea (CC), temporal limbus (TL), and temporal conjunctiva (TC) using IR thermometer and IR camera. The temperatures obtained from the IR thermometer were higher than those obtained from the digital thermometer. only NC temperature was found to be significantly (P<0.05) higher than other eye regions, and rectal and vulva temperatures. IR thermal camera showed no significant differences in the eyes' NL, CC, TL, and TC regions compared to rectum and vulva temperatures using the digital thermometer. The muzzle temperature was significantly (P<0.05) lower than all other body parts. In addition, the inner thigh, inguinal region, and ear temperatures were significantly (P<0.05) higher than rectum and vulva temperatures. The rectum and vulva temperatures obtained from the IR thermometer were significantly higher (P<0.05) than thermal camera and digital thermometer temperatures. In conclusion, thermal cameras as a non-invasive and accurate method can be an alternative temperature measuring method.

References

Arfuso, F., Acri, G., Piccione, G., Sansotta, C., Fazio, F., Giudice, E., & Giannetto, C. (2022). Eye surface infrared thermography usefulness as a noninvasive method of measuring stress response in sheep during shearing: Correlations with serum cortisol and rectal temperature values. Physiology & Behavior, 250, 113781. https://doi.org/10.1016/j.physbeh.2022.113781

Cai, Z., Cui, J., Yuan, H., & Cheng, M. (2023). Application and research progress of infrared thermography in temperature measurement of livestock and poultry animals: A review. Computers and Electronics in Agriculture, 205, 107586. https://doi.org/10.1016/j.compag.2022.107586

Crawford, D. C., Hicks, B., & Thompson, M. J. (2006). Which thermometer? Factors influencing best choice for intermittent clinical temperature assessment. Journal of medical engineering & technology, 30(4), 199-211. https://doi.org/10.1080/03091900600711464

Fuchs, B., Sørheim, K. M., Chincarini, M., Brunberg, E., Stubsjøen, S. M., Bratbergsengen, K., Hvasshovd, S.O., Zimmermann, B., Lande, U.S. & Grøva, L. (2019). Heart rate sensor validation and seasonal and diurnal variation of body temperature and heart rate in domestic sheep. Veterinary and animal science, 8, 100075. https://doi.org/10.1016/j.vas.2019.100075

George, W. D., Godfrey, R. W., Ketring, R. C., Vinson, M. C., & Willard, S. T. (2014). Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. Journal of Animal Science, 92(11), 4949-4955. https://doi.org/10.2527/jas.2014-8087

Goodwin, S. D. (1998). Comparison of body temperatures of goats, horses, and sheep measured with a tympanic infrared thermometer, an implantable microchip transponder, and a rectal thermometer. Journal of the American Association for Laboratory Animal Science, 37(3), 51-55.

Hussein, N. J., & Al-Nakshabendy, A. A. (2023). Can facial expressions and infrared thermography be used to measure positive emotions in goats?. Bulg J Agric Sci, 29, 733-739. https://www.agrojournal.org/29/04-21.html

Hussein, N. J., & Al-Naqshabendy, A. A. (2024a). USING SHEEP FACIAL GRIMACE SCALE, INFRARED THERMOGRAPHY AND CORTISOL HORMONE TO MEASURE PAIN IN SHEEP INFECTED WITH MASTITIS DISEASE. Science Journal of University of Zakho, 12(1), 70-74. https://doi.org/10.25271/sjuoz.2024.12.1.1185

HUSSEIN, N., & AL-NAQSHABENDY, A. A. (2024b). MEASURING POSITIVE EMOTIONS IN FREE-RANGE SHEEP USING PERIPHERAL TEMPERATURES, FACIAL ACTION UNITS AND EAR POSTURES. Bulgarian Journal of Veterinary Medicine, 27(4). https://doi.org/10.15547/bjvm.2022-0123

Ibáñez, C., Moreno-Manrique, M., Villagrá, A., Bueso-Ródenas, J., & Mínguez, C. (2023). Evaluation of Non-Contact Device to Measure Body Temperature in Sheep. Animals, 14(1), 98. https://doi.org/10.3390/ani14010098

Katsoulos, P. D., Athanasiou, L. V., Karatzia, M. A., Valasi, I., Boscos, C., & Karatzias, H. (2016). Comparison of a non-contact infrared thermometer with a rectal digital thermometer for use in ewes. Small Ruminant Research, 143, 84-88. https://doi.org/10.1016/j.smallrumres.2016.09.004

Knízková, İ., Kunc, P., Gürdil, G., Pınar, Y., & Selvi, K. Ç. (2007). Applications of infrared thermography in animal production. Anadolu Tarım Bilimleri Dergisi, 22(3), 329-336. https://doi.org/10.7161/anajas.2007.22.3.329-336

McLennan, K. M., Rebelo, C. J., Corke, M. J., Holmes, M. A., Leach, M. C., & Constantino-Casas, F. (2016). Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Applied Animal Behaviour Science, 176, 19-26. https://doi.org/10.1016/j.applanim.2016.01.007

McManus, C., Tanure, C. B., Peripolli, V., Seixas, L., Fischer, V., Gabbi, A. M., Silvio, R. O. & Costa Jr, J. B. G. (2016). Infrared thermography in animal production: An overview. Computers and Electronics in Agriculture, 123, 10-16. https://doi.org/10.1016/j.compag.2016.01.027

Molony, V., Kent, J. E., Viñuela-Fernández, I., Anderson, C., & Dwyer, C. M. (2012). Pain in lambs castrated at 2 days using novel smaller and tighter rubber rings without and with local anaesthetic. The Veterinary Journal, 193(1), 81-86. https://doi.org/10.1016/j.tvjl.2011.09.030

Niven, D. J., Gaudet, J. E., Laupland, K. B., Mrklas, K. J., Roberts, D. J., & Stelfox, H. T. (2015). Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Annals of internal medicine, 163(10), 768-777. https://doi.org/10.7326/M15-1150

Ozaki, R., Inoue, S., Yorozui, Y., Ichikawa, R., Yamada, N., Higashi, S., Matsuyama, S., Tsukamura, H., Ohkura, S., Uenoyama, Y. & Morita, Y. (2024). Capturing temperature changes on the ocular surface along with estrus and ovulation using infrared thermography in Japanese Black cows. Journal of Reproduction and Development, 70(1), 49-54. https://doi.org/10.1262/jrd.2022-116

Pecoraro, V., Petri, D., Costantino, G., Squizzato, A., Moja, L., Virgili, G., & Lucenteforte, E. (2021). The diagnostic accuracy of digital, infrared and mercury-in-glass thermometers in measuring body temperature: a systematic review and network meta-analysis. Internal and emergency medicine, 16, 1071-1083. https://doi.org/10.1007/s11739-020-02556-0

Proctor, H., & Carder, G. (2016). Can changes in nasal temperature be used as an indicator of emotional state in cows?. Applied Animal Behaviour Science, 184, 1-6. https://doi.org/10.1016/j.applanim.2016.07.013

Soerensen, D. D., & Pedersen, L. J. (2015). Infrared skin temperature measurements for monitoring health in pigs: a review. Acta veterinaria scandinavica, 57, 1-11. https://doi.org/10.1186/s13028-015-0094-2

Sullivan, S. J., Rinaldi, J. E., Hariharan, P., Casamento, J. P., Baek, S., Seay, N., Vesnovsky, O. & Topoleski, L. T. (2021). Clinical evaluation of non-contact infrared thermometers. Scientific reports, 11(1), 22079. https://doi.org/10.1038/s41598-021-99300-1

Weaver, S. J., Hynd, P. I., Ralph, C. R., Edwards, J. H., Burnard, C. L., Narayan, E., & Tilbrook, A. J. (2021). Chronic elevation of plasma cortisol causes differential expression of predominating glucocorticoid in plasma, saliva, fecal, and wool matrices in sheep. Domestic Animal Endocrinology, 74, 106503. https://doi.org/10.1016/j.domaniend.2020.106503

Zebaria, H. M., Hidayet, H. M., Al-Naqshabendy, A. A., Hussein, N. J., & Kakarash, N. A. (2021). Pain caused by ear tagging in kids of native black goats. Science Journal of University of Zakho, 9(1), 15-19. DOI: https://doi.org/10.25271/sjuoz.2021.9.1.781

Downloads

Published

2025-01-14

How to Cite

Hussein, N. J., Habib, R. S., Khalaf, F. M., Fazal, R. M., & Owais, M. (2025). USING INFRARED THERMOGRAPHIC TECHNIQUE AS AN ALTERNATIVE TO CONVENTIONAL RECTAL THERMOMETER IN SHEEP. Science Journal of University of Zakho, 13(1), 65–70. https://doi.org/10.25271/sjuoz.2025.13.1.1446

Issue

Section

Science Journal of University of Zakho